https://mytopschools.com/

Mathematics 1983-2004 JAMB

Questions And Answers

1. If M represents the median and D the mode of the measurements $5,9,3,5,8$ then (M,D) is
A.
$(6,5)$
B.
$(5,8) \quad$ C.
D.
$(5,5)$
E
$(7,5)$
$(5,7)$
2. A construction company is owned by two partners X and Y and it is agreed that their profit will be divided in the ratio 4:5. at the end of the year. Y received \#5,000 more than x . what is the total profit of the company for the year?
A. \#20,000.00
B. $\mathrm{P}^{\prime} 0 \# 25,000.00$
C. $\# 30,000.00$
D. \#15,000.003 E.\#45,000.00
3. Given a regular hexagon, calculate each interior angle of the hexagon.
A. $\quad 60^{\circ}$
B. $\quad 30^{\circ}$
C. $\quad 120^{\circ}$
D. $\quad 45^{\circ}$
E $\quad 135^{\circ}$
4. Solve the following equations
$4 x-3=3 x+y=2 y+5 x-12$
A. $4 x=5, y=2$
B. $x=2, y=5$ C. $x=-2, y=-5$
D. $x=5, y=-2$
E. $x=-5, y=-2$
5. If $x=1$ is root of the equation $x^{3}-2 x^{2}-5 x+6$, find the other roots
A. $\quad-3$ and 2
B.
-2 and 2
C. 3 and -2
D. $\quad 1$ and 3 E. $\quad-3$ and 1
6. If x is jointly proportional to the cube of y and the fourth power of z. In what ratio is x increased or decreased when y is halved and z is doubled?
A. $4: 1$ increase
B. $2: 1$ increase
C. 1:4 decrease
D. 1:1 no change
E. 3: 4 decrease

In the above figure $\mathrm{PQR}=60^{\circ}, \mathrm{QPR}=90^{\circ}, \mathrm{PRS}=90^{\circ}$, $\mathrm{RPS}=45^{\circ}, \mathrm{QR}=8 \mathrm{~cm}$. Determine PS
A. $\quad 2 \sqrt{3} \mathrm{~cm}$ B. $\quad 4 \sqrt{6} \mathrm{~cm}$
C. $2 \sqrt{ } 6 \mathrm{~cm}$
D. $8 \sqrt{6} \mathrm{~cm}$ E $\quad 8 \mathrm{~cm}$
8. Given that $\cos \mathrm{z}=\mathrm{L}$, where z is an acute angle find an expression for $\frac{\operatorname{Co}+Z-\operatorname{cosec} z}{\sec Z+\tan Z}$
A. $1-\mathrm{L}$
B. $\frac{L^{2}}{\mathrm{~L}}=\frac{\sqrt{ } 1-\underline{\varsigma}^{2}}{}$
C. $-\mathrm{L}-\sqrt{ } 1-\mathrm{L}$
$1+\mathrm{L}$ $(\mathrm{C} 1+\mathrm{L})+\sqrt{ } 1-\mathrm{L}^{2}$
D. $\sqrt{ } \mathrm{L}-1$.
E. $\mathrm{L}-\left(\mathrm{L}^{2}-1\right)$
$\left(\mathrm{L} 1+\mathrm{L}^{2}\right)+\sqrt{ } 1-\mathrm{L}^{2}$

$$
1+\sqrt{ } 1 \cdot L^{2}+\sqrt{ } 1 \cdot L^{2}
$$

9. If $0.0000152 \times 0.00042=\mathrm{Ax} \mathrm{10}$, where
$1 £ \mathrm{~A}<10$, find A and B .
A. $\mathrm{A}=9, \mathrm{~B}=6.38$
B. $A=6.38, B=-9$
C. $A=6.38, B=9$
D. $A=6.38, B=-1$
E. $A=6.38, B=1$
10. If $x+2$ and $x-1$ are factors of the expressions $1 \mathrm{x}+$ $2 \mathrm{kx}^{2}+24$, find the values of 1 and k
A. $1=-6, k=-9$
B. $\mathrm{l}=-2, \mathrm{k}=1$
C. $1=-2, k=-1$
D. $1=0, k=1$
E. $1=6, k=0$
11. Make T the subject of the equation

$$
\frac{a v}{1-V}=\sqrt[3]{\frac{2 V+T}{a} 2 T}
$$

A. $3 \mathrm{av} /(1-\mathrm{v})$
B. $2 v(1-v)^{2}-a^{2} v^{2} / 2 a^{2} v^{2}-(1-V)^{2}$
C. $2 v(1-v)^{2}+a^{3} v^{2} / 2 a^{2} v^{2}+(1-v)^{2}$
D. $2 v(1-v)^{2}-a^{4} v^{3} / 2 a^{3} v^{3}-(1-v)^{3}$
E. $2 v(1-v)^{3}-a^{4} v^{3} / 2 a^{3} v^{3}+(1-v)^{3}$
12.

In a class of 60 pupils, the statistical distribution of the number of pupils offering Biology, History, French, Geography and Additional Mathematics is as shown in the pie chart above. How many pupils offer Additional Mathematics?
A. $\quad 15$
B.
C. 18
D. 12
E
28

The value of $(0.303)^{3}-(0.02)^{3}$ is
A. 0.019
B. 0.0019
D. 0.000019
E. 0.000035
14. y varies partly as the square of x and y partly as the inverse of the square root of x. write down the expression for y if $\mathrm{y}=2$ when $\mathrm{x}=1$ and $\mathrm{y}=6$ when $\mathrm{x}=$ 4
A. $\mathrm{y}=\frac{10 \mathrm{x}^{2}}{31}+\frac{52}{31 \sqrt{ }}$
B. $y=x^{2}+\frac{1}{\sqrt{x}}$
C. $y=x^{2}+1$
D. $\quad y=\frac{x^{2}}{31}+\frac{1}{31 \sqrt{ } x}$
E. $y=\frac{10}{31}\left(x^{2}+\frac{1}{\sqrt{x}}\right)$
15. Simplify $(x-7) /\left(x^{2}-9\right)\left(x^{2}-3 x\right) /\left(x^{2}-49\right)$
A. $x /(x-3)(x+7)$
B. $(x+3)(x+7) / x$
C. $x /(x-3)(x-$
D. $x /(x+3)(x+7)$
E. $x /(x+4)(x+7)$
16. The lengths of the sides of a right-angled triangle at (3x $+1) \mathrm{cm},(3 \mathrm{x}-1) \mathrm{cm}$ and xcm .
A. 2
B. 6
C.
18
D. $12 \quad \mathrm{E} \quad 0$
17. The scores of a set of a final year students in the first semester examination in a paper are $41,29,55,21,47,70,70,40,43,56,73,23,50,50$. find the median of the scores.
A.
47 B.
$48 \frac{1}{2} \quad$ C.
50
D. $\quad 48 \mathrm{E} 49$
18.

Which of the following equations represents the above graph?
A. $y=1+2 x+3 x^{2}$
B. $y=1-2 x+3 x^{2}$
C. $y=1+2 x 3 x^{2}$
D. $y=1-2 x-3 x^{2}$
E. $y=3 x^{2}+2 x-1$
19.

The above figure FGHK is a rhombus. What is the value of the angle x ?

PQRS is a desk of dimensions 2 mx 0.8 m which is inclined at 300 to the horizontal. Find the inclination of the diagonal PR to the horizontal.
A. $23^{\circ} 35^{\prime} \quad$ B. $\quad 30^{\circ}$
C. $\quad 15^{0} 36$
D. $\quad 10^{0} \quad \mathrm{E} \quad 10^{\circ} 42^{\prime}$
21. Find x if $\left(\mathrm{x}_{\text {base } 4}\right)^{2}=1001000_{\text {base 2 }}$
A. $6 \quad$ B. 12
D. $210 \quad \mathrm{E} \quad 110$
22. \quad Simplify $\log _{10} a^{1 / 2}+1 / 4 \log _{10} a-1 / 12 \log _{10} a^{7}$
$\begin{array}{llllll}\text { A. } & 1 & \text { B. } & 7 / 6 \log _{10} \mathrm{a} & \text { C. } & 0 \\ \text { D. } & 10 & \text { E } & \mathrm{a} & & \end{array}$
23. If w varies inversely as V and u varies directly as w^{3}, find the relationship between u and V given that $\mathrm{u}=1$, when $\mathrm{V}=2$
A. $\quad u=8 V^{3}$
B. $u=2 \sqrt{V}$
C. $\quad V=8 / u^{2}$
D. $\quad V=8 u^{2}$
E. $\quad U=8 / v^{3}$
24. Solve the simultaneous equations for x

$$
\begin{gathered}
x^{2}+y-8=0 \\
y+5 x-2=0
\end{gathered}
$$

$\begin{array}{llllll}\text { A. } & -28,7 & \text { B } & 6,-28 & \text { C } & 6,-1 \\ \text { D } & -1,7 & \text { E } & 3,2 & & \end{array}$
D. $\quad-1,7 \quad \mathrm{E} \quad 3,2$
25. Find the missing value in the following table.

x	-2	-1	0	1	2	3
$y=x^{3}-x+3$		3	3	3	9	27

A. -3
B. 3
C. $\quad-9$
D. 13
E $\quad 9$

If O is the centre of the circle in the figure above. Find the value of x
A. $\quad 50$
B.
260
C. 100
D. 65
E
130
27. Find the angle of the sectors representing each item in a pie chart of the following data. $\quad 6,10,14,16,26$
A. $15^{0}, 25^{0} 35^{0}, 40^{\circ} 65^{0}$,
B. $60^{\circ}, 100^{\circ} 140^{\circ} 160^{\circ} 260^{\circ}$
C. $6^{0}, 10^{0} 14^{0} 16^{0} 26^{0}$,
D. $30^{\circ}, 50^{\circ} 70^{\circ} 80^{\circ}, 130^{\circ}$
E. None of the above
28. The scores of 16 students in a Mathematics test are 65,65,55,60,60,65,60,70,75,70,65,70,60,65,65,70
What is the sum of the median and modal scores?
A. 125
B. $\quad 130$
C. 140
D. $150 \quad$ E 137.5
29. The letters of the word MATRICULATION are cut and put into a box. One of the letter is drawn at random from the box. Find the probability of drawing a vowel.
A. $\quad 2 / 13$
B. $5 / 13$
C. $\quad 6 / 13$
D. $8 / 13$
E. $4 / 13$
30. Correct each of the number 59.81789 and 0.0746829 to three significant figures and multiply them, giving your answer to three significant figures.
A. $\quad 4.46$
B. 4.48 C.
C. $\quad 4.47$
D. $\quad 4.49 \mathrm{E} \quad 4.50$
31. If a rod of length 250 cm is measured as 255 cm longer in error, what is the percentage error in measurement?
A. 55
B.
10 C.
C. 5
D. 4
E 2
32. If $(2 / 3) m(3 / 4) n=256 / 729$, find thevalues of m and n
A. $m=4, n=2$
B. $m=-4, n=-2$
C. $m=-4, n=2$
D. $m=4, n=-2$
E. $m=-2, n=4$
33. Without using tables find the numerical value of $\log _{7} 49$ $+\log _{7}(1 / 7)$
A. $\quad 1$
B $\quad 2$
C. 3
D. 7
E $\quad 0$
34. Factorize completely $81 a^{4}-16 b^{4}$
A. $\quad(3 a+2 b)(2 a-3 b)\left(9 a^{2}+4 b^{2}\right)$
B. $(3 a-2 b)(2 a-3 b)\left(4 a^{2}-9 b^{2}\right)$
C. $\quad(3 a-2 b)(3 a-2 b)\left(9 a^{2}+4 b^{2}\right)$
D. $\quad(3 a-2 b)(2 a-3 b)\left(9 a^{2}+4 b^{2}\right)$

E $\quad(3 a-2 b)(2 a-3 b)\left(9 a^{2}-4 b^{2}\right)$
35. One interior angle of a convex hexagon is 170° and each of the remaining interior angles is equal to x^{0}. find x
A. $\quad 120^{\circ}$
B.
110°
C $\quad 105^{0}$
D. $\quad 102^{0}$
E
100°
36. PQRS is a cyclic quadrilateral in which $\mathrm{PQ}=\mathrm{PS}$. PT is a tangent to the circle and PQ makes and angle 50° with the tangent as shown in the figure below. What is the size of QRS?

A.
50°
B
40°
C.
110°
D.
80°
E
100°
37. A ship H leaves a port P and sails 30km due South. Then it sails 60 km due west. What is the bearing of H from P ?

A.	$26^{\circ} 34^{\prime}$	B	$243^{\circ} 26^{\circ}$	C	$116^{\circ} 34^{\prime}$
D.	$63^{\circ} 26^{\prime}$	E	240°		

38. In a sample survey of a university community the following table shows the percentage distribution of the number of members per household.

No of members per household	1	2	3	4	5	6	7	8	Total
Number of households	$\mathbf{3}$	$\mathbf{1 2}$	$\mathbf{1 5}$	28	21	10	7	4	100

A. 4
B 3
C 5
D. $\quad 4.5$ E None
39. On a square paper of length 2.524375 cm is inscribed a square diagram of length 0.524375 . find the area of the paper no covered by the diagram correct to 3 significant figures.
A. $\quad 6.00 \mathrm{~cm}^{2} \quad$ B $\quad 6.10 \mathrm{~cm}^{2} \quad$ C $\quad 6 . \mathrm{cm}^{2}$
D. $\quad 6.09 \mathrm{~cm}^{2} \mathrm{E} \quad 4.00 \mathrm{~cm}^{2}$
40. If $f(X)=\frac{1}{x-1}+\frac{x-1}{x^{2}-1}$ find $f(1-x)$
A. $1 / x+1 /(x+2)$
B. $x+1 /(2 x-1)$
C. $-1 / \mathrm{x}-1 /(\mathrm{x}-2)$
D. $-1 / \mathrm{x}+1 /\left(\mathrm{x}^{2}-1\right)$
41. In the figure below find PRQ

A. $\quad 66 \frac{1}{2}{ }^{0}$
B.
C.
125^{0}
D. 105^{0}
E
65^{0}
42. Simplify $\sqrt{27 a^{9} / 8}$

| A. $\quad 9 a^{2} / 2$ | B. $\quad 9 a^{3} / 2$ | C. $\quad 2 / 3 a^{2}$ |
| :--- | :--- | :--- | :--- | :--- |

43.

The farm yields of four crops on a piece of land in Ondo are represented on the pie chart above. What is the angle of the sector occupied by Okro in the chart?

| A. $\quad 911_{2}{ }^{0}$ | B. $\quad 19 /_{3}{ }^{0}$ | C. $\quad 331 /{ }_{3}{ }^{0}$ |
| :--- | :--- | :--- | :--- |

D. $\quad 11^{0}$

E $\quad 91^{0}$
44.

In the figure above, PQR is a straight line. Find the values of x and y
A. $\quad x=22.5^{\circ}$ and $y=33.75^{\circ}$
B. $\quad x=15^{\circ}$ and $y=52.5^{\circ}$
C. $\quad x=22.5^{\circ}$ and $y=45.0^{\circ}$
D. $\quad x=56.25^{\circ}$ and $y=11.5^{0}$

E $\quad x=18 .{ }^{0}$ and $y=56.5^{0}$
45. PQR is the diameter of a semicircle RSP with centre at Q and radius of length 3.5 cmc . if $\mathrm{QPT}=\mathrm{QRT}=60^{\circ}$. Find the perimeter of the figure (PTRS $p=22 / 7$)

A. $\quad 25 \mathrm{~cm}$
B.
18 ccm C.
36 cm
47.
46. In a triangle $\mathrm{PQR}, \mathrm{QR}=3 \mathrm{~cm}, \mathrm{PR}=$ $\mathrm{PQR}=30^{\circ}$. find angles P and R
A. $\quad \mathrm{P}=60^{\circ}$ and $\mathrm{R}=90^{\circ}$
B. $\quad \mathrm{P}=30^{\circ}$ and $\mathrm{R}=120^{\circ}$
C. $\quad \mathrm{P}=90^{\circ}$ and $\mathrm{R}=60^{\circ}$
D. $\quad \mathrm{P}=60^{\circ}$ and $\mathrm{R}=60^{\circ}$

E $\quad \mathrm{P}=45^{\circ}$ and $\mathrm{R}=105^{\circ}$

In the above diagram if $\mathrm{PS}=\mathrm{SR}$ and $\mathrm{PQ} / / \mathrm{SR}$. what is the size of PQR ?
A. $\quad 25^{\circ}$
B. $\quad 50^{\circ}$
C. $\quad 55^{0}$
D. $\quad 65^{0}$
E $\quad 75^{0}$
48. Find the mean of the following 24.57,25.63,25.32,26.01,25.77
A.
25.12
B.
25.30
C. $\quad 25.26$
D. $\quad 25.50 \mathrm{q} \quad$ E $\quad 25.73$

-

49.

In the figure above PT is a tangent to the circle with centre O . if $\mathrm{PQT}=30^{\circ}$. find the value of PTO
A. $\quad 30_{0}$
B.
15 C.
C. $\quad 24^{0}$
D. $\quad 12^{0}$
E $\quad 60^{\circ}$

50 A man drove for 4hours at a certain speed, he then doubled his speed and drove for another 3 hours. Altogether he covered 600 km . At what speed did he drive for the last 3 hours?
A. $120 \mathrm{~km} / \mathrm{hr}$
B. $60 \mathrm{~km} / \mathrm{hr}$
C. $600 / 7 \mathrm{~km} / \mathrm{hr}$
D. $50 \mathrm{~km} / \mathrm{hr}$
E. $100 \mathrm{~km} / \mathrm{hr}$.

Mathematics 1984

1. $\operatorname{Simplify} \frac{(2 / 3-1 / 5)-1 / 3 \text { of } 2 / 5}{3-1 / 1 / 2}$
A. $\quad 1 / 7$ B. 7
C. $1 / 3$
D. $\quad 3 \mathrm{E} \quad 1 / 5$
2. If $263+441=714$, what number base has been used?
A. $12 \quad$ B. 11
D. $9 \quad$ E 8
3. $0.00014323 / 1.940000=\mathrm{k} \mathrm{x} \mathrm{10} 0^{\mathrm{n}}$ where $1 £ \mathrm{k}<10$ and n is a whole number. The values of K and are
A. $\quad 7.381$ and -11
B. $\quad 2.34$ and 10
C. $\quad 3.87$ and 2
D. $\quad 7.831$ and -11
E $\quad 5.41$ and -2
4. $\quad \mathrm{P}$ sold his bicycle to Q at a profit of 10%. Q sold it to R for \#209 at a loss of 5\%. How much did the bicycle cost P?
A
A. \#200 B. \#196
D.
\#205
E \#150
5. If the price of oranges was raised by $1 / 2 \mathrm{k}$ per orange, the number of oranges customer can buy for \#2.40 will be less by 16 . What is the present price of an orange?
A. $\quad 21 / 2 \mathrm{k}$
B.
$3{ }^{1 / 2} \mathrm{k} \quad$ C.
C. $\quad 5^{1} / 2 \mathrm{k}$
D. $\quad 20 \mathrm{k}$
E $\quad 21^{1} / 2 \mathrm{k}$
6. A man invested a total of \#50,000 in two companies. If these companies pay dividend of 6% and 8% respectively, how much did he invest at 8% if the total yield is \#3.700?

A.	$\# 15,000$	B.	$\# 29,600$	C.
D.	$\# 27,800$	E	$\# 35,000$	

7. Thirty boys and x girls sat for a test. The mean of the boys' scores and that of the girls were respectively 6 and 8 . find x if the total score was 468 .
A. 38
B. 24
C. 36
D. $\quad 22$
E $\quad 41$
8. The cost of production of an article is made up as follows

Labour	$\# 70$
Power	$\# 15$
Materials	$\# 30$
Miscellaneous	$\# 5$

Find the angle of the sector representing labour in a pie chart.
A. $\quad 210^{0}$
B. 105^{0}
C. $\quad 175^{0}$
D. $\quad 150^{\circ}$
E $\quad 90^{\circ}$
9. Bola chooses at random a number between 1 and 300 . What is the probability that the number is divisible by 4 ?

A.	$1 / 3$	B.	$1 / 4$	C.	$1 / 5$
D.	$4 / 300$	E.	$1 / 300$		

10. Find without using logarithm tables, the value of

$\begin{gathered} \log _{3} 27-\log _{1 / 4} 64 \\ \log _{3} 1 / 81 \end{gathered}$				C.	-3/2
A.	$7 / 4$	B.	-7/4		
D.	$7 / 3$	E	-1/4		

11. A variable point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ traces a graph in a two dimensional plane. $(0,-3)$ is one position of P. If x increases by 1 unit, y increases by 4 units. The equation of the graph is
A. $-3=y+4 / x+1$
B. $4 y=-3+x$
C. $y / x=-3 / 4$
D. $y+3=4 x$
E $\quad 4 y=x+3$
12. A trader in a country where their currency 'MONT' (M) is in base five bought $103_{(5)}$ oranges at M14 ${ }_{(5)}$ each. If he sold the oranges at M24 ${ }_{(5)}$ each, what will be his gain?
A. $\quad \mathrm{M}_{103}{ }_{(5)}$
B. $\quad \mathrm{M} 1030_{(5)}$
C. $\quad \mathrm{M} 102_{(5)}$
D. $\quad \mathrm{M} 2002_{(5)}$
E. $\mathrm{M} 3032_{(5)}$
13. Rationalize
$(5 \sqrt{ } 5-7 \sqrt{ } 5)(/ \sqrt{ } 7-\sqrt{5}$
A. $\quad-2 \sqrt{ } 35$
B. $\quad 4 \sqrt{7}-6 \sqrt{5}$ C.
$-\sqrt{35}$
D. $\quad 4 \sqrt{ } 7-8 \sqrt{ } 5$ E. $\sqrt{ } 35$
14. Simplify

\[

\]

15. p varies directly as the square of q an inversely as r. if $\mathrm{p}=36$, when $\mathrm{q}=3$ and $\mathrm{r}=\mathrm{p}$, find p when $\mathrm{q}=5$ and $\mathrm{r}=2$
A. 72
B. $\quad 100$
C. $\quad 90$
D. 200 E 125
16. Factorise $6 x^{2}-14 x-12$
A. $\quad 2(x+3)(3 x-2)$
B.
$6(x-2)(x+1)$
C. $\quad 2(x-3)(3 x+2) \quad$ D. $\quad 6(x+2)(x-1)$
E $\quad(3 x+4)(2 x+3)$
17. A straight line $y=m x$ meets the curve $y=x^{2}-12 x+40$ in two distinct points. If one of them is $(5,5)$, find the other
A.
$(5,6)$
B.
$(8,8) \quad \mathrm{C}$.
D.
E $\quad(7,5)$
18. The table below is drawn for a graph $y=x^{2}-3 x+1$

x	-3	-2	-1	0	1	2	3
$y=x^{2}-3 x+1$	1	-1	3	1	-1	3	1

From $x=-2$ to $x=1$, the graph crosses the x-axis in the range(s)
A. $\quad-1<x<0$ and $0<x<1$
B. $\quad-2<x<-1$ and $0<x<1$
C. $\quad-2<x<-1$ and $0<x<1$
D. $\quad 0<x<1$ E $\quad 1<x<2$
19. In a racing competition. Musa covered a distance of 5 xkm in the first hour and $(x+10) \mathrm{km}$ in the next hour. He was second to Ngozi who covered a total distance of 118 km in the two hours. Which of the following inequalities is correct?
A. $0<-x<15$
B. $\quad-3<x<3$
C. $\quad 15<x<18$
D. $0<x<15$
E $\quad 0<x<18$
20. $2 x+3 y=1$ and $y=x-2 y=11$, find $(x+y)$
A. 5
B.
$-3 \quad \mathrm{C}$. 8
D. $2 \quad \mathrm{E} \quad-2$
21. Tunde and Shola can do a piece of work in 18days. Tunde can do it alone in x days, whilst Shola takes 15 days longer to do it alone. Which of the following equations is satisfied by x ?
A. $\quad x^{2}-5 x-18=0$
B. $\quad x^{2}-20 x+360=0$
C $\quad x^{2}-21 x-270=0$
D. $2 x^{2}+42 x-190=0$
E $\quad 3 x^{2}-31 x+150=0$
22. If $f x)=2(x-3) 2+3(x-3)-4$ and $g(y)=\sqrt{ } 5+y$, find $g(f(3))$ and $g\{f(4)\}$
A. $\quad 3$ and 4
B. $\quad-3$ and 4
C. -3 and -4
D. 3 and - 4
E $\quad 0$ and $\sqrt{ } 5$
23. The quadratic equation whose roots are $1 \sqrt{13}$ and $1+$ $\sqrt{13}$ is
A. $\quad x^{2}+(1-\sqrt{ } 13) x+1+\sqrt{ } 13=0$
B. $\quad x^{2}+(1-\sqrt{ } 13) x+1-\sqrt{ } 13=0$
C. $\quad x^{2}+2 x+12=0 \quad$ D. $\quad x^{2}-2 x+12=0$

E $\quad x^{2}-2 x-12=0$
24. Find a factor which is common to all three binomial expressions

$$
4 a 2-9 b^{2}, a^{3}+27 b^{3},(4 a+6 b)^{2}
$$

A. $4 a+6 b$
B. $4 a-6 b$
C. $\quad 2 a+3 b$
D. $2 a-3 b$
E none
25.

What is the volume of the regular three dimensional figure drawn above?
A. $\quad 160 \mathrm{~cm}^{3}$
B. $\quad 48 \mathrm{~cm}^{3}$
C. $\quad 96 \mathrm{~cm}^{3}$
D. $\quad 120 \mathrm{~cm}^{3}$
E. $\quad 40 \mathrm{~cm}^{3}$
26. If $(x-2)$ and $(x+1)$ are factors of the expression $x^{3}+\mathrm{px}^{2}$ $+q x+1$, what is the sum of p and q ?

A.	0	B.	-3	C.	3

D. $-17 / 3$ E $-2 / 3$
27. A cone is formed by bending a sector of a circle having an angle of 210°. Find the radius of the base of the cone if the diameter of the circle is base of the cone if the diameter of the circle is 12 cm
A. $\quad 7.00 \mathrm{~cm}$
B. $\quad 1.75 \mathrm{~cm}$
C. $\quad \mathrm{O} 21 \mathrm{~cm}$
D. $\quad 3.50 \mathrm{~cm}$
E. $\quad 2 \mathrm{O} 21 \mathrm{~cm}$
28.

Using $\triangle \mathrm{XYZ}$ in the figure above find XYZ
A. $\quad 29^{\circ} \quad$ B. $31^{\circ} 20^{\prime}$
C. $\quad 31^{0}$
D. $\quad 31^{0} 18^{\prime}$
E $\quad 59^{\circ}$
29. The sides of a triangle are $(x+4) \mathrm{cm}, \mathrm{xcm}$ and $(\mathrm{x}-4) \mathrm{cm}$ respectively. If the cosine of the largest angle is $1 / 5$, find the value of x
A. $\quad 24 \mathrm{~cm}$
B. 20 cm
C. 28 cm
D. $88 / 7 \mathrm{ccm}$
E. 0 cm
30. If $a=2 x / 1-x$ and $b=1+x / 1-x$
then $a^{2}-b^{2}$ in the simplest form is
A. $3 \mathrm{x}+1 /(\mathrm{x}-1)$
B. $3 x^{2}-1 /(x-1)^{2}$
C. $3 x^{2}+1 /(1-x)^{2}$
D. $5 x^{2}-1 /(1-x)^{2}$
E. $5 x^{2}-2 x-1 /(1-x)^{2}$
31. $\operatorname{Simplifty}(1+\underline{(\underline{x}-1)}(x+2)$
($\overline{x+1})$
A. $\quad\left(x^{2}-1\right)(x+2)$
B. $\quad x^{2}(x+2) / x+1$
C. $\quad x^{2}-(x+2)$
D. $2 x(x+2)$
E $\quad 2 x(x+2) / x+1$
32.

In the figure above PQRSTW is a regular hexagon. QS intersects RT at V. calculate TVS.
A.
60°
B. $\quad 90^{\circ}$
C. $\quad 120^{\circ}$
D. $\quad 30^{\circ} \quad \mathrm{E} \quad 80^{\circ}$
33. Find the integral values of x which satisfy the inequalities $-3<2-5 x<12$
A. $\quad-2,-1$
B. $-2,2$
C. $-1,0$
D. 0,1
E
1,2

Find the area of the shaded portion of the semi - circular figure above.
A. $\quad r^{2} / 4(4 p-3 \sqrt{3})$
B. $\quad r^{2} / 4(2 p+3 \sqrt{3})$
C. $\quad 1 / 2 \mathrm{r}^{2} \mathrm{p}$
D. $\quad 1 / 8 \mathrm{r} \sqrt{3}$
E $\quad r^{2} / 8(4 p+3 \sqrt{3})$
35.

In the figure above QRS is a line, $\mathrm{PSQ}=35^{\circ} \mathrm{SPR}=30^{\circ}$ and O is the centre of the circle find OQP
A. $\quad 35^{\circ}$
B.
30°
C.
130°
D. $\quad 25^{\circ}$
E $\quad 65^{\circ}$
36. If $\mathrm{pq}+1=\mathrm{q}^{2}$ and $\mathrm{t}=1 / \mathrm{p}-1 / \mathrm{pq}$ express t in terms of q
A. $1 / \mathrm{p}-\mathrm{q}$
B. $\quad 1 / q-1$
C. $\quad 1 / q+1$
D. $\quad 1+\mathrm{q}$
E $\quad 1 / 1-\mathrm{q}$
37. The cumulative frequency function of the data below is given by the frequency $y=c f(x)$. what is $c f(5)$?

Scores(n)			Frequency(f)	
	3		30	
	4		32	
	5		30	
	6		35	
	7		20	
A.	30	B.	35	
D.	62	E	92	

38. In the figure determine the angle marked y

39. A right circular cone has a base radius rcm and a vertical $2 y^{0}$. the height of the cone is
A. $\quad r \tan y^{\circ} \mathrm{cm}$
B. $\quad \mathrm{r} \sin \mathrm{y}^{\circ} \mathrm{cm}$
C. $\quad \mathrm{r} \cot \mathrm{y}^{0} \mathrm{~cm}$
D. $\quad \mathrm{r} \cos \mathrm{y}^{0} \mathrm{~cm}$
E $\quad r \operatorname{cosec} y^{0} \mathrm{~cm}$
40. Two fair dice are rolled. What is the probability that both show up the same number of point?
A. $1 / 36$
B. $\quad 7 / 36$
C.
$1 / 2$
D. $1 / 3$
E $\quad 1 / 6$
41. The larger value of y for which $(y-1)^{2}=4 y-7$ is
A. $\quad 2$
B. $\quad 4$
C.
D. 7
E 8
42.

Find the x coordinates of the points of intersection of the two equations in the graph above.
A. 1,1
B.
0,-4
C.
4,9
D. $0,0 \quad \mathrm{E}$
0,4
43. If $\sin \mathrm{q}=\mathrm{x} / \mathrm{y}$ and $0^{\circ}<\mathrm{q}<90^{\circ}$
then find $1 / \tan q$
A. $\quad x / \sqrt{ }\left(y^{2}-x^{2}\right)$
B. x / y
C. $\quad \frac{\sqrt{y^{2}}-n^{2}}{\sqrt{y^{2}}-x^{2}}$
D. $\quad\left(\sqrt{ } \mathrm{y}^{2}-\mathrm{x}^{2}\right) /\left(\sqrt{ } \mathrm{y}^{2}-\mathrm{x}^{2}\right)$
E $\quad \sqrt{y^{2}}-x^{2 / y}$
44.

In the figure above $T S P=P R Q, Q R=8 \mathrm{~cm} . \mathrm{PR}=6 \mathrm{~cm}$ and $\mathrm{ST}=12 \mathrm{~cm}$. Find the length SP
A. $\quad 4 \mathrm{~cm} \quad$ B. $\quad 16 \mathrm{~cm}$
C.
9 cm
D. $\quad 14 \mathrm{~cm} \quad \mathrm{E} \quad$ Impossible insufficient data

Marks

The bar chart above shows the mark distribution in a class test. Find the number of students in the class.
A. $\quad 9$
B. 2
C. 60
D. 30
E $\quad 34$
46.

In the figure above, O is the centre of circle PQRS and $\mathrm{PS} / / \mathrm{RT}$. If $\mathrm{PRT}=135^{\circ}$, then PSQ is
A. $\quad 67 \frac{1}{2}{ }^{0} \quad$ B. $\quad 45^{0}$
C. $\quad 90^{\circ}$
D. $\quad 33^{3} /{ }_{4}{ }^{0} \quad$ E $\quad 22 \frac{1}{2}{ }^{0}$
47. XYZ is a triangle and XW is perpendicular to YZ at W . if $X Z=5 \mathrm{~cm}$ and $W Z=4 \mathrm{~cm}$, calculate $X Y$.
A. $\quad 5 \sqrt{3} \mathrm{~cm}$
B. $\quad 3 \sqrt{5} \mathrm{~cm}$
C. 3 O 3 cm
D. 5 cm
E. 6 cm

48. Measurements of the diameters in centimeters of 20 copper spheres are distributed as shown below

Class boundary in cm	frequency
$3.35-3.45$	3
$3.45-3.55$	6
$3.55-3.65$	7
$3.65-3.75$	4

What is the mean diameter of the copper sphere?
A. $\quad 3.40 \mathrm{~cm}$
B. $\quad 3.58 \mathrm{~cm}$
C.
3.56 cm
D. $\quad 3.62 \mathrm{~cm}$
E. $\quad 3.63 \mathrm{~cm}$

Use the instruction below to answer question49 and 50

49. What is the obtuse angle formed when the point U is joined to Q?
A. $\quad 75^{\circ}$
B. 154
C. $\quad 120^{\circ}$
D. $\quad 105^{0}$
E $\quad 125^{\circ}$
50. What is the acute angle formed when the point V joined to Q ?
A. $\quad 60^{\circ}$
B.
30°
C. $\quad 45^{0}$
D. $\quad 90^{\circ}$
E
15^{0}

Mathematics 1985

1. Arrange the following numbers in ascending order of magnitude 6/7,13/15,0.865
A. $\quad 6 / 7<0.865<13 / 15$
B. $\quad 6 / 7<13 / 15<0.865$
C. $13 / 15<6 / 7<0.865$
D. $\quad 13 / 15<0.865<6 / 7$

E $\quad 0.865<6 / 7<13 / 15$
2. A sum of money was invested at 8% per annum simple interest. If after 4years the money amounts to \#330.00, find the amount originally invested.
A. $\quad \# 180.00$
B. \#165.00
C. $\# 150.00$
D. \#200.00
E. \#250.00
3. In the equation below, solve for x if all the numbers are in base 2? $\quad 11 / \mathrm{x}=1000 /(\mathrm{x}+101)$
A. 101 B. 11
C. 110
D. 111 E 10
4. List all integers satisfying the inequality

$$
-2<2 x-6<4
$$

A. 2,3,4,5
B.
2,3,4
C.
2,5
D. $3,4,5$
E
4,5
5. Find correct to tow decimal places

$$
100+1 / 100+3 / 1000+27 / 10000
$$

A. $\quad 100.02$
B. $\quad 1000.02$
C. $\quad 100.22$
D. $\quad 100.01$
E $\quad 100.51$
6. \quad Simplify $1 / 2+\underline{1}$

7. If three number $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in the ratio 6:4:5 find the value of $(3 a-a) /(4 a+r)$
A. $\quad 3 / 2 \mathrm{~B}$
$2 / 3$
C. 2
D. $\quad 3 \mathrm{E} \quad 18$
8. Without using tables, evaluate $\log _{2} 4+\log _{4} 2-\log _{25} 5$
A. $\quad 1 / 2$ B. $1 / 5 \quad$ C. $\quad 0$
D. $\quad 5 \mathrm{E} \quad 2$
9. John gives one third of his money to Janet who has \#105.00. He then finds that his money is reduced to one-fourth of what Janet now has. Find how much money John had at first.
A. \#45.00
B.
\#48.00
C. \#52.00
D. \#58.00 E \#60.00
10. Find x if $\log _{9} x=1.5$
A. $\quad 72.0 \quad$ B.
27.0
C. $\quad 36.0$
D. $\quad 3.5 \quad \mathrm{E} \quad 24.5$
11. Write h in terms of $a=b(1-c h)$
(1-dh)
A $\quad \mathrm{h}=\frac{(\mathrm{a}-\mathrm{b})}{(\mathrm{ad}-\mathrm{bc})}$
B. $\mathrm{h}=\frac{(\mathrm{a}+\mathrm{b})}{(\mathrm{ad}-\mathrm{bc})}$
C. $\quad \mathrm{h}=\frac{(\mathrm{ad}-\mathrm{bc})}{(\mathrm{a}-\mathrm{b})}$
D. $h=\frac{(1-b)}{(d-b c)}$
E $\quad \mathrm{h}=\frac{(\mathrm{b}-\mathrm{a})}{(\mathrm{ad}-\mathrm{bc})}$
12. $22^{1} / 2 \%$ of the Nigerian Naira is equal to $17_{10}^{1} \%$ of a foreign currency M. what is the conversion rate of the M to the Naira?
A. $\quad 1 \mathrm{M}={ }^{15} /{ }_{57} \mathrm{~N}$
B. $\quad 1 \mathrm{M}=2^{11} /{ }_{57} \mathrm{~N}$
C. $\quad 1 \mathrm{M}=18 /{ }_{57} \mathrm{~N}$
D. $\quad 1 \mathrm{M}=381 /{ }_{4} \mathrm{~N}$
E $\quad 1 \mathrm{M}=384^{3} /{ }_{4} \mathrm{~N}$
13. Find the values of p for which the equation $x^{2}-(p-2) x$ $+2 p+1=0$ has equal roots
A. $(0,12)$
B. $(1,2)$
C.
D. (4.5) E (3.4)
$(21,0)$
14. If $\mathrm{e}^{\mathrm{x}}=1+\mathrm{x}+\mathrm{x}^{2} / 12+\mathrm{x}^{3} / 1 \cdot 2 \cdot 3+\ldots .$. find $1 / \mathrm{e}^{1 / 2}$
A. $1-\underline{x}+\underline{x}^{2}-x^{2}+\ldots$
B. $1+\underline{x}+\underline{x}^{2}-\underline{x}^{2}$
$2 \quad 12^{3} 2^{4} 3$
$21.2^{2} \quad 2^{3} .3$
C. $1+\underline{x}+x^{2}-x^{2}+\ldots$
D. $1-\underline{x}+\underline{x}^{2}-\underline{x}^{2}+$
$2 \quad 1.2^{3} 2^{4} 3$
$21.2^{2} \quad 2^{3} .3$
E. $1+\underline{x}^{3}+x^{3}-x^{4}+$
1.212 .412 .63
5. $(4 \sqrt{ } 3+4 \sqrt{ } 2)(4 \sqrt{ } 3-4 \sqrt{ } 2)(3 \sqrt{ }+\sqrt{ } 2)$ is equal to

$$
\begin{array}{llr}
\text { A. } & 0 \quad \text { B. } & 4 \sqrt{ } 3+4 \sqrt{ } 2 \\
\text { C. } & (4 \sqrt{ } 2-4 \sqrt{ } 3)(\sqrt{ } 3+\sqrt{ } 2) \\
\text { D. } & \sqrt{ } 3+\sqrt{ } 2
\end{array}
$$

E $\quad 1$
16. In a restaurant, the cost of providing a particular type of food is partly constant and partly inversely proportional to the number of people. If the cost per head for 100people is 30 k and the cost for 40 people is 60 k , find the cost for 50 people
A. $15 \mathrm{k} \quad$ B. 45 k
C. 20 k
D. $50 \mathrm{k} \quad \mathrm{E} \quad 40 \mathrm{k}$
17. The factors of $9-\left(x^{2}-3 x-1\right)^{2}$ are
A. $\quad-(x-4)(x+1)(x-1)(x-2)$
B. $\quad(x-4)(x-1)(x-1)(x+2)$
C. $\quad-(x-2)(x+1)(x+2)(x+4)$
D. $\quad(x-4)(x-3)(x-2)(x+1)$

E $\quad(x-2)(x+2)(x-1)(x+1)$
18. If $3^{2 y}-6\left(3^{y}\right)=27$ find y
A. 3 B. -1
D. $-3 \quad \mathrm{E} \quad 1$
19. Factorize $a b x^{2}+8 y-4 b x-2 a x y$
A. $\quad(a x-4)(b x-2 y)$
B. $(a x+b)(x-8 y)$
C. $(a x-2 y)(b y-4)$ D.
$(a b x-4)(x-2 y)$
E $\quad(b x-4)(a x-2 y)$
20. At what real value of x do the curves whose equations are $y=x^{3}+x$ and $y=x^{2}+1$ intersect?
A. $\quad-2$
B. 2
C.
D. 0
E $\quad 1$
21. If the quadrilateral function $3 x^{2}-7 x+R$ is a perfect square find R
A. $\quad 49 / 24$
B.
49/3 C.
C. $49 / 6$
D. $49 / 12$
E $\quad 49 / 36$
22. Solve the following equation
$2 /(2 r-1)-5 / 3=1 /(r+2)$
A. $(-1,5 / 2)$
B.
$(-1,-5 / 2)$
C. $(5 / 2,1)$
D.
$(2,1)$
E $\quad(1,2)$
23. Solve for (x, y) in the equations
$2 x+y=4: x^{2}+x y=-12$
A. $(6,-8) ;(-2,8)$
B. $(3,-4) ;(-1,4)$
C. $(8,-4) ;(-1,4)$
D. $(-8,6) ;(8,-2)$
E $\quad(-4,3) ;(4,-1)$
24. Solve the simultaneous equations
$2 x-3 y+10=10 x-6 y=5$
A. $\quad \mathrm{x}=2^{1 / 2}, \mathrm{y}=3^{1 / 3}$
B. $\mathrm{x}=3^{1} / 2, \mathrm{y}=2^{1 / 3}$
C. $\quad \mathrm{x}=2 \frac{1}{4}, \mathrm{y}=3$
D. $x=3^{1 / 2}, y=2^{1 / 3}$
E $\quad \mathrm{x}=2^{1 / 2}, \mathrm{y}=2 \frac{1}{3}$
33.

In D XYZ above, $\mathrm{XKZ}=90^{\circ}, \mathrm{XK}=15 \mathrm{~cm}, \mathrm{XZ} \mathrm{cm}$ and YK $=8 \mathrm{~cm}$. Find the area of the D XYZ.
A. 180 sq.cm
B. $\quad 210 \mathrm{sq} . \mathrm{cm}$
C. 160sq.cm
D. $320 \mathrm{sq} . \mathrm{cm}$
E 390sq.cm
34. Without using tables. Calculate the value of $1+\sec ^{2} 30$?
A. $\quad 2^{1 / 3}$
B. 2
C.
11_{3}
D. $3 / 4 \quad \mathrm{E} \quad 3 / 7$
35. What is the probability that a number chosen at random from the integers between 1 and 10 inclusive is either a prime or a multiple of 3 ?
A. $\quad 7 / 10$
B. $3 / 5$
C.
D. $1 / 2$ E $3 / 10$
36. Find the area of a regular hexagon inscribed in a circle of radius 8 cm .
A. $\quad 16 \sqrt{ } 3 \mathrm{~cm}^{2}$
B. $\quad 96 \sqrt{3 \mathrm{~cm}^{2}}$
C. $\quad 192.3 \mathrm{~cm}^{2}$
D. $16 \mathrm{~cm}^{2}$
E $\quad 32 \mathrm{~cm}^{2}$
37.

In the figure above, MNOP is a cyclic quadrilateral, MN and PQ are produced to meet at X and NQ and MP are produced to meet at Y . if $\mathrm{MNQ}=86^{\circ}$ and $\mathrm{NQP}=122^{\circ}$, find ($\mathrm{x}^{0} \mathrm{y}^{0}$)
A. $\quad\left(28^{0}, 36^{0}\right)$
B. $\quad\left(36^{0}, 28^{0}\right)$
C. $\left(43^{0}, 61^{0}\right)$
D. $\quad\left(61^{0}, 43^{\circ}\right)$
E $\quad\left(36^{\circ}, 43^{\circ}\right)$
38. If $\cos q=\sqrt{ } 3 / 2$ and 0 is less than 90°, calculate

$$
\cot (90-q) / \sin ^{2} q
$$

A. $\quad 4 \sqrt{ } 3 / 3$
C. $\sqrt{3} / 2$
B. $\quad 4 \sqrt{ } 3$
E $\quad 2 / \sqrt{ } 3$

In the figure above POQ is the diameter of the circle PQRS. If $P S R=145^{0}$, find x^{0}
A. $\quad 25^{0}$
B. $\quad 35^{0}$
C. $\quad 45^{0}$
D. $\quad 55^{\circ}$
E. $\quad 25^{0}$
41.

In the figure above GHIJKLMN is a cube of side a. find the length of HN
A. $\quad 3 \sqrt{ }$ a
B. 3 a
C. $3 \mathrm{a}^{2}$
D. $\quad a \sqrt{2}$
E $\quad a \sqrt{3}$
42. PQRS is a trapezium of area $14 \mathrm{~cm}^{2}$ in which $\mathrm{PQ} / / \mathrm{RS}$, if $\mathrm{PQ}=4 \mathrm{~cm}$ and $\mathrm{SR}=3 \mathrm{~cm}$, find the area of DSQR in cm^{2}
A. $\quad 7.0 \quad$ B.
C. 5.2
D. $\quad 5.0$
E $\quad 4.1$

In the figure PQ is the tangent from P to the circle QRS with SR as its diameter. If $\mathrm{PQR}=\mathrm{q}^{0}$, which of the following relationship 0° is correct.?
A. $\quad q^{0}+f=90^{\circ}$
B. $\quad f^{0}=90^{\circ}-20^{\circ}$
C. $\quad q^{0}=f^{0}$
D. $\quad f^{0}=20^{\circ}$
E $\quad q^{0}+2 f^{0}=120^{0}$
44. A bag contains 4 white balls and 6 red balls. Two Redballs are taken from the bag without replacement. What is the probability that they are both red?
A. $\quad 1 / 3$
B.
2/9 C.
C. 2/15
D. $1 / 5$
E $3 / 5$
45. How many $2 \sqrt{2} \mathrm{~cm}$ diameter discs can be cut out of a sheet of cardboard $2^{18} \sqrt{2} p^{3 / 4} \mathrm{~cm}$ long and $\sqrt{p^{1 / 2}} \mathrm{~cm}$ wide?
A. $\quad 4^{9} \quad$ B. $\quad 2^{19} \quad$ C. $\quad 2^{17} p^{3 / 4}(\sqrt{2} p+2)$
D. $\quad 2^{10} \mathrm{p}^{3 / 4}(1+\sqrt{2})$
E. $\quad 2^{9}(\sqrt{2}+1)$
46. Two points X and Y both on latitude $60^{\circ} \mathrm{S}$ have longitudes $147^{\circ} \mathrm{E}$ and $153^{\circ} \mathrm{W}$ respectively. Find to the nearest kilometre the distance between X and Y measured along the parallel of latitudes (Take $2 \pi R=4 x$ $10^{4} \mathrm{~km}$, where R is the radius of the earth).
A. $\quad 28.850 \mathrm{~km}$
B. $\quad 16.667 \mathrm{~km}$
C. $\quad 8.333 \mathrm{~km}$
D. $\quad 6.667 \mathrm{~km}$
E $\quad 3.333 \mathrm{~km}$
47.

In the figure above the area of the shaded segment is
A. $3 p$
B.
$9 \sqrt{3} / 4$
C. $\quad 3(p-3 \sqrt{3} / 4)$
D. $\quad 3(\sqrt{3}-p) / 4$
E $\quad p+9 \sqrt{3} / 4$
48. In a class of 120students, 18 of them scored an A grade in Mathematics. If the section representing the A grade students on a pie chart has angle Z^{0} at the centre of the circle, what is Z ?
A.
D. $52 \quad$ E 54
49.

In the figure above find the angle x

A.	100°	B.	120°	C.	60°
D.	110°	E.	140°		

50. If $\frac{(x+1)}{(x-2)}-\frac{(x+1)}{(n+2)}=b x$

Find a simplest form
A.
$\mathrm{x}^{2}-1$
B.
$x^{2}+1$
C. $x^{2}+4$
D. $1 \quad$ E $\quad x^{2}-4$

Mathematics 1986

1. Evaluate

$$
(212)_{3}-(121)_{3}+(222)_{3}
$$

A.
$(313)_{3}$
B. $(1000)_{3}$
C.
$(1020)_{3}$
D. $(1222)_{3}$
2. If Musa scored 75 in Biology instead of 57, his average mark in four subjects would have been 60 . what was his total mark?
A. 282
B. 240
C. 222
D. 210
3. Divide the L.C.M. of 48, 64 and 80 by their H.C.F
A. 20
B. $\quad 30$
C. 48
D. 60
4. Find the smallest number by which 252 can be multiplied to obtain a perfect square
A. 2
B. 3
C. 5
D. 7
5. Find the reciprocal of $\frac{2 / 3}{1 / 2+1 / 3}$
A. $\quad 4 / 5$
B. $5 / 4$
C. $\quad 2 / 5$
D. 6/7
6. Three boys shared some oranges. The first receive $1 / 3$ of the oranges, the second received $2 / 3$ of the remainder, if the third boy received the remaining 12 oranges. How many oranges did they share?
A. 60
B. 54
C. 48
D. 42
7. If $\mathrm{P}=18, \mathrm{Q}=21, \mathrm{R}=-6$ and $\mathrm{S}=-4$ calculate $(\mathrm{P}-\mathrm{Q})+\mathrm{S}^{2}$
A. $\quad-11 / 216$
B. $\quad 11 / 216$
C. $-43 / 115$
D. $41 / 116$
8.

Simplify $\frac{0.03 \times 4 \times 0.00064}{0.48 \times 0.012}$
A. $\quad 3.6 \times 10^{2}$
B. $\quad 36 \times 10^{2}$
C. $\quad 3.6 \times 10^{3}$
D. $\quad 3.6 \times 10^{4}$
9. Udoh deposited \#150 00 in the bank. At the end of 5 years the simple interest on the principal was \#55 00. At what rate per annum was the interest paid?
A. 11%
B. $\quad 7 \frac{1}{3} \%$
C. 5%
D. $\quad 3 \frac{1}{2} \%$
10. A number of pencils were shared out among Bisi, Sola and Tunde in the ratio $2: 3: 5$ respectively. If Bisi got 5, how many were shared out?
A. $\quad 15$
B. 25
C. 30
D. $\quad 50$
11. The ages of Tosan and Isa differ by 6 and the product of their ages is 187 . write their ages in the form (x, y), where $x>y$
A. $(12,9)$
B. $(23,17)$
C. $(17,11)$
D. $(18,12)$
12. In 1984, Ike was 24 years old and is father was 45 years old in what year was Ike exactly half his father's age?
A. 1982
B. 1981
C. 1979
D. 1978
13. Simplify $\left(\frac{1}{5} \frac{1}{}\right) \times-1 / \sqrt{ } 3$

$$
(\sqrt{5+\sqrt{ } 3-\sqrt{ } 5-\sqrt{ } 3)}
$$

A. $\sqrt{ } 3 / \sqrt{5}$
B. $-2 / \sqrt{3}$
C. $\quad-2$
D. -1
14. Find n if $\log _{2} 4+\log _{2} Z-\log _{2} n=-1$
A. 10
B.
14
C. 27
D. 28
15. $(91 / 3 \times 27-1 / 2) /\left(3^{-1 / 6} \times 3^{-2 / 3}\right)$
A. $1 / 3$
B. $\quad 1$
C. 3
D. $\quad 9$
16. If x varies directly as y^{3} and $\mathrm{x}=2$ when $\mathrm{y}=1$, find x when $y=5$
A. 2
B. $\quad 10$
C. 125
D. 250
17. Factorize completely.

	$3 a+125 a^{3}$
A.	$\left(2 a+5 x^{2}\right)(4+25 a x)$
B.	$a(2+5 x)\left(4-10 x+25 x^{2}\right)$
C.	$(2 a+5 x)\left(4-10 a x+25 a^{2}\right)$
D.	$a(2+5 x)\left(4+10 a x+25 a^{2}\right)$

18. If $y=x /(x-3)+x /(x+4)$ find y when $x=-2$
A. $\quad-3 / 5$
B. $\quad 3 / 5$
C. $\quad-7 / 5$
D. $7 / 5$
19. Find all the numbers x which satisfy the inequality $1 /$ $3(x+1)-1>1 / 5(x+4)$
A. $\quad x<11$
B. $\quad \mathrm{x}<-1$
C. $\quad x>6$
D. $\mathrm{x}>11$
20. Factorize $x^{2}+2 a+a x+2 x$
A. $\quad(x+2 a)(x+1)$
B. $(x+2 a)(x-1)$
C. $\quad\left(x^{2}-1\right)(x+a)$
D. $(x+2)(x+a)$
21. Solve the equation $3 x^{2}+6 x-2=0$
A. $x=-1, \pm \sqrt{ } 3 / 3$
B. $\quad x=-1, \pm \sqrt{ } 15 / \sqrt{ } 3$
C. $x=-2, \pm 2 \sqrt{ } 3 / 3$
D. $x=-2, \pm 2 \sqrt{ } 15 / 3$
22. Simplify. $1 / 5 \mathrm{x}+5+1 / 7 \mathrm{x}+7$
A. $12 / 35+7$
B. $1 / 35(x+1)$
C. $12 x / 35(x+1)$
D. $\quad 12 / 35 x+35$
23. The curve $y=-x^{2}+3 x+4$ intersects the coordinate axes at
A. $(4,0)(0,0)(-1,0)$
B. $\quad(-4,0)(0,4)(1,1)$
C. $(0,0)(0,1)(1,0)$
D. $(0,4)(4,0)(-1,0)$
24. \quad Factorize $(4 a+3)^{2}-(3 a-2)^{2}$
A. $\quad(a+1)(a+5)$
B. $(a-5)(7 a-1)$
C. $(a+5)(7 a+1)$
D. $a(7 a+1)$
25. If $5^{(x+2 y)}=5$ and $4^{(x+3 y)}=16$, find $3^{(x+y)}$
A. 0
B. 1
C. 3
D. 27
26. Simplify $1 / x-2+1 / x+2+2 x / x^{2}-4$
A. $2 x /(x-2)(x+2)\left(x^{2}-4\right)$
B. $2 \mathrm{x} / \mathrm{x}^{2}-4$
C. $x / x^{2}-4$
D. $4 x / x^{2}-4$
27. Make r the subject of the formula
$S=6 / v-w / 2$
A. $V=\frac{6}{S^{2}}=\frac{12}{w}$
B. $\quad v=\frac{12}{25^{2}-w}$
C. $v=\underline{12}-2 s^{2}$
D. $v=\frac{12}{2 s^{2}+w}$
28. Find the values of x which satisfy the equation

\[

\]

29. $a / b-c / d=k$, find the value of
$\left(3 a^{2}-a c+c^{2}\right) /\left(3 b^{2}-b d+d^{2}\right)$ in term of k
A. $\quad 3 \mathrm{k}^{2}$
B. $\quad 3 \mathrm{k}-\mathrm{k}^{2}$
C. $\quad 17 \mathrm{k}^{2} / 4$
D. $\quad k^{2}$
30. At what point does the straight line $y=2 x+1$ intersect the curve $\mathrm{y}=2 \mathrm{x}^{2}+5 \mathrm{x}-1$?
A. $(-2,-3)$ and $(1 / 2,2)$
B. $(-1 / 20)$ and $(2,5)$
C. $(1 / 2,2)$ and $(1,3)$
D. $(1,3)$ and $(2,5)$
31. A regular polygon on n sides has 160° as the size each interior. Find n.
A. 18
B. $\quad 16$
C. 14
D. $\quad 12$
32. If $\cos q=a / b$, find $1+\tan ^{2} q$
A. $\quad b^{2} / a^{2}$
B.
$\mathrm{a}^{2} / \mathrm{b}^{2}$
C. $\quad\left(a^{2}+b^{2}\right) /\left(b^{2}-a^{2}\right)$ D. $\left(2 a^{2}+b^{2}\right) /\left(a^{2}+b^{2}\right)$
33. In the diagram below, PQ and RS are chords of a circle centre O which meet at T outside the circle. If $\mathrm{TP}=$ $24 \mathrm{~cm}, \mathrm{TQ}=8 \mathrm{~cm}$ and $\mathrm{TS}=12 \mathrm{~cm}$, find $T R$.

34. The angle of elevation of the top of a vertical tower 50 metres high from a point X on the ground is 30°. From a point Y on the opposite side of the tower, the angle of elevation of the top of the tower is 60°. find the distance between the points X and Y .
A. $\quad 14.43 \mathrm{~m}$
B. $\quad 57.73 \mathrm{~m}$
C. $\quad 101.03 \mathrm{~m}$
D. $\quad 115.47 \mathrm{~m}$
35. A girl walk 45 metres in the direction 050° from a point Q to a point X . She then walks 24 metres in the direction 140° from X to a point Y . How far is she then from Q ?
A. $\quad 69 \mathrm{~m}$
B. $\quad 57 \mathrm{~m}$
C. 51 m
D. 21 m
36.

The figure is a solid with the trapezium PQRS as its uniform cross-section. Find its volume
A. $102 \mathrm{~m}^{3}$
B. $576 \mathrm{~m}^{3}$
C. $816 \mathrm{~m}^{3}$
D. $1056 \mathrm{~m}^{3}$
37.

PQ and PR are tangents from P to a circle centre O as shown in the figure above. If $\mathrm{QRP}=34^{\circ}$. Find the angle marked x .
A. $\quad 34^{0}$
$\begin{array}{cc} & \text { B. } \\ \text { D. } & 112^{0}\end{array}$
38. An arc of circle of radius 6 cm is 8 cm long. Find the area of the sector.
A. $\quad 5 \frac{1}{3} \mathrm{~cm}^{2}$
B. $\quad 24 \mathrm{~cm}^{2}$
C. $\quad 36 \mathrm{~cm}^{2}$
D. $\quad 48 \mathrm{~cm}^{2}$
39.

In $\triangle \mathrm{XYZ}$ above, determine the cosine of angle Z
A. $\quad 3 / 4$
B. $29 / 36$
C. $2 / 3$
D. $1 / 2$
40.

In the figure above $\triangle \mathrm{PQT}$ is isosceles. $\mathrm{PQ}=\mathrm{QT}$. SRQ $=35^{\circ}, \mathrm{TQ}=20^{\circ}$ and PQR is a straight line. Calculate TSR.
A. $\quad 20^{\circ}$
B. $\quad 55^{0}$
C. $\quad 75$
D. $\quad 140^{\circ}$
41. Find the total surface are of a solid cone of radius $2 \sqrt{3} \mathrm{~cm}$ and slanting side $4 \sqrt{3} \mathrm{~cm}$
A. $\quad 8 \sqrt{3} \mathrm{~cm}^{2}$ B. $\quad 24 \mathrm{~cm}^{2}$
C. $\quad 15 \sqrt{ } 3 \mathrm{~cm}^{2}$ D. $36 \mathrm{~cm}^{2}$
42. If U and V are two distinct fixed points and W is a variable point such that UWV is a straight angle. What is the locus of W ?
A. The perpendicular bisector of UV
B. A circle with UV as radius
C. A line parallel to the line UV
D. A circle with the line UV as the diameter
43.

In the figure above, $\mathrm{PQ} / / \mathrm{ST}, \mathrm{RS} / / \mathrm{UV}$. If $\mathrm{PQR}=35^{\circ}$ and $\mathrm{QRS}=65^{\circ}$, find STV
A. $\quad 30^{\circ}$
B. $\quad 35^{\circ}$
C. $\quad 55^{\circ}$
D. $\quad 65^{0}$
44. An open rectangular box externally measures $4 \mathrm{~m} x 3 \mathrm{mx}$ 4 m . find the total cost of painting the box externally if it costs \#2.00 to paint one square metre.
A. \#96.00
B. \#112.00
C. $\quad \# 136.00$
D. \#160.00
45. Of the nine hundred students admitted in a university in 1979, the following was the distribution by state

Anambra	185
Imo	135
Kaduna	90
Kwara	110
Ondo	155
Oyo	225

In a pie chart drawn to represent this distribution, the angle subtended at the centre by Anambra is
A. $\quad 50^{\circ}$
B. $\quad 65^{\circ}$
C. $\quad 74^{0}$
D. $\quad 88^{\circ}$
46. Find the median of the numbers $89,141,130,161,120$, $131,131,100,108$ and 119
A. 131
B. $\quad 125$
C. 123
D. 120
47. Find the probability that a number selected at random from 40 to 50 is a prime
A. $\quad 3 / 11$
B. $\quad 5 / 11$
C. $3 / 10$
D. $\quad 4 / 11$
48. The people in a city with a population of 109 million were grouped according to their ages. Use the diagram below to determine the number of people in the 15-29 years group.

A. $\quad 29 \times 10^{4}$
B. $\quad 26 \times 10^{4}$
C. $\quad 16 \times 10^{4}$
D. $\quad 13 \times 10^{4}$
49. A man kept 6black, 5 brown and 7 purple shirts in a drawer. What is the probability of his picking a purple shirt with his eyes closed?
A. $1 / 7$
B. $11 / 18$
C. $\quad 7 / 18$
D. $7 / 11$
50. The table below gives the scores of a group of students in a Mathematics test

Score	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	7	$\mathbf{8}$
Frequency	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{1 4}$	$\mathbf{1 2}$	$\mathbf{6}$	4	$\mathbf{1}$

If the mode is m and the number of students who scored 4 or less is S. What is (s, m)?
A. $(27,4)$
B.
C. $(13,4)$
D.
$(14,4)$
$(4,4)$

Mathematics 1987

1. Convert 241 in base 5 to base 8
A. $\quad 71_{8}$
B. $\quad 1078$
C. 176
D. 241_{8}
2. Find the least length of a rod which can be cut into exactly equal strips, each of either 40 cm or 48 cm in length.
A. 120 cm
B. 240 ccm
C. 360 cm
D. 480 cm
3. A rectangular has lawn has an area of 1815 square yards. If its length is 50 meters, find its width in metres. Given that 1 meters equals 1.1 yards
A. $\quad 39.93$
B. $\quad 35.00$
C. $\quad 33.00$
D. $\quad 30.00$
4. Reduce each number to two significant figures and then evaluate

$$
\frac{(0.02174 \times 1.2047)}{0.023789}
$$

A. $\quad 0.8$
B. $\quad 0.9$
C. $\quad 1.1$
D. $\quad 1.2$
5. A train moves from P to Q at an average speed of $90 \mathrm{~km} /$ hr and immediately returns from O to P through the same route and at an average speed of $45 \mathrm{~km} / \mathrm{h}$. find the average speed for the centre journey.
A. $\quad 5500 \mathrm{~km} / \mathrm{hr}$
B. $6000 \mathrm{~km} / \mathrm{hr}$
C. $\quad 67.50 \mathrm{~km} / \mathrm{hr}$
D. $7500 \mathrm{~km} / \mathrm{hr}$
6. If the length of a square is increased by 20% while its width is decreased by 20% to form a rectangle, what is the ratio of the area of the rectangle to the area of the square?
A. $\quad 6.5$
B. $\quad 25.24$
C. $\quad 5.6$
D. 24.25
7. Two brothers invested a total of $\# 5,000.00$ on a farm project. The farm yield was sold for \# 15, 000.00 at the end of the season. If the profit was shared in the ratio $2: 3$, what is the difference in the amount of profit received by the brothers?
A. \#2,000.00
B. $\# 4,000.00$
C. \#6,000.00
D. \#10,000.00
8. Peter's weekly wages are \#20.00 for the first 20 weeks and \#36.00 for the next 24 weeks. Find his average weekly wage for the remaining 8 weeks of the year. If his average weekly wage for the whole year is \#30.00
A. \#37.00
B. $\quad \# 35.00$
C. \#30.00
D. \#5.00
9. A man invests a sum of money at 4% per annum simple interest. After 3 years, the principal amounts to \#7,000.00. find the sum invested
A. $\# 7,840.00$
B. $\# 6,250.00$
C. \#6,160.00
D. \#5,833.33
10. By selling 20 oranges for \#1.35 a trader makes a profit 8%. What is his percentage gain or loss if he sells the same 20 oranges for \#1.10?
A. 8%
B. 10%
C. 12%
D. 15%
11. Four boys and ten girls can cut a field in 5 hours. If the boys work at $1 / 4$ the rate of which the girls work, how many boys will be needed to cut the field in 3 hours?
A. 180
B. $\quad 60$
C. 25
D. 20
12. Evaluate without using tables.
A. $625 / 8$
B. $8 / 625$
C. $1 / 8$
D. 8
13. Instead of writing $35 / 6$ as a decimal correct to 3 significant figures, a student wrote it correct to 3 places of decimals. Find his error in standard form
A. $\quad 0.003$
B. $\quad 3.0 \times 10^{-3}$
C. $\quad 0.3 \times 10^{2}$
D. $\quad 0.3 \times 10^{-3}$
14. Simplify without using tables

	$\left(\log _{2} 6-\log _{2} 3\right) /\left(\log _{2} 8-2 \log _{2} 1 / 2\right)$		
A.	$1 / 5$	B.	$1 / 2$
C.	$-1 / 2$	D.	$\log _{2} 3 / \log _{2} 7$

15. Simplify without using tables
$2 \sqrt{ } 14 \times 3 \sqrt{ } 21) / 7 \sqrt{ } 24 \times 2 \sqrt{ } 98$)
A. $\frac{3 \sqrt{ } 14}{4}$
B. $\frac{3 \sqrt{ } 21}{4}$
C. $\frac{3 \sqrt{ } 14}{28}$
D. $\frac{3 \sqrt{ } 2}{28}$
16. If $p-2 / 3\left(1-r^{2}\right) / n^{2}$, find n when $r=O ̈ 1 / 3$ and $p=1$
A. $\quad 3 / 2$
B. 3
C. $1 / 3$
D. $2 / 3$
17. If $a=U^{2}-3 V^{2}$ and $b=2 U V+V^{2}$ evaluate $(2 a-b)\left(a-b^{3}\right)$, when $u=1$ and $v=-1$
A. $\quad 9$
D. 33
18. The formula $\mathrm{Q}=15+05 \mathrm{n}$ gives the cost Q (in Naira) of feeding n people for a week. Find in kobo the extra cost of feeding one additional person.
A. 350k
B. 200 k
C. 150k
D. 50 k
19. If P varies inversely as V and V varies directly as R^{2}, find the relationship between P and R given that $R=7$ when $\mathrm{P}=2$
A. $\quad \mathrm{P}=98 \mathrm{R}^{2}$
B. $\quad \mathrm{PR}^{2}=98$
C. $\quad \mathrm{P}=1 / 98 \mathrm{R}$
D. $\quad \mathrm{P}=\mathrm{R}^{2} / 98$
20. Make y the subject of the formula $Z=x^{2}+1 / y^{3}$
A. $y=\frac{1}{\left(z-x^{2}\right)^{3}}$
B. $y=\frac{1}{\left(Z+x^{3}\right)^{1 / 3}}$
C. $y=\frac{1}{\left(Z-x^{2}\right)^{1 / 3}}$
D. $y=\frac{1}{\sqrt[3]{ } Z-\sqrt[3]{ } x^{2}}$
21. Find the values of m which make the following quadratic function a perfect square

$$
x^{2}+2(m+1) x+m+3
$$

A. $-1,1$
B. $-1,2$
C. $1,-2$
D. $2,-2$
22. Factorize $6^{2 x+1}+7(6 x)-5$
A. $\left.\quad\left\{3\left(6^{x}\right)-5\right\}\left\{2\left(6^{x}\right)\right\}+1\right\}$
B. $\left.\left\{3\left(6^{x}\right)-5\right\}\left\{2\left(6^{x}\right)\right\}-1\right\}$
C. $\left.\left\{2\left(6^{x}\right)-5\right\}\left\{3\left(6^{x}\right)\right\}+1\right\}$
D. $\left.\left\{2\left(6^{x}\right)-5\right\}\left\{3\left(6^{x}\right)\right\}-1\right\}$
23. Find two values of y which satisfy the simultaneous equations $x+y=5, x^{2}-2 y^{2}=1$
A. $12,-2$
B. $\quad-12,12$
C. $\quad-12,2$
D. $2,-2$
24. $\quad \mathrm{An}(\mathrm{n}-2)^{2}$ sided figure has n diagonals find the number n of diagonals for a 25 sided figure
A. 7
B. 8
C. $\quad 9$
D. 10
25.

A cubic function $f(x)$ is specified by the graph show above. The values of the independent variable for which the function vanishes are
A. $-1,0,1$
B. $\quad-1<x<1$
C. $\mathrm{x},-1$
D. $\quad \mathrm{x}>1$
26. Solve the inequality $x-1>4(x+2)$
A. $\quad x>-3$
B. $\quad x<-3$
C. $2<x<3$ D. $\quad-3<x<-2$
27. Simplify $\left(x^{2}-y^{2}\right) /\left(2 x^{2}+x y-y^{2}\right)$
A. $\begin{aligned} & x+-y \\ & 2 x+y\end{aligned}$
B. $\quad x+y$
C. $\frac{x-y}{2 x-y}$
D. $x-y$
$2 \overline{x+y}$
28. The minimum value of y in the equation
$y=x^{2}-6 x+8$ is
A. 8
B. 3
C. 0
D. -1
29. Find the sum of the first 21 terms of the progression -$10,-8,-6, \ldots$.
A. 180
B. 190
C. 200
D. 210
30. Find the eleventh term of the progression 4, 8, 16,..
A. $\quad 2^{13}$
B. $\quad 2^{12}$
C. $\quad 2^{11}$
D. $\quad 2^{10}$
31.

In the diagram above, POQ is a diameter, O is the centre of the circle and TP is a tangent. Find the value of x.
A.
B. $\quad 40^{\circ}$
C. $\quad 45^{0}$
D. $\quad 50^{\circ}$
32.

In the diagram above, $\mathrm{QR} / / \mathrm{TS}, \mathrm{QR}: \mathrm{TS}=2: 3$. find the ratio of the area of triangle PQR to the area of the trapezium QRST
A. $\quad 4: 9$
B. $\quad 4: 5$
C. 1:3
D. $\quad 2: 3$
33. Three angle s of a nonagon are equal and the sum of six other angles is 1110°. Calculate the size of one of the equal triangles
A. $\quad 210^{\circ}$
B. 150°
C. $\quad 105^{0}$
D. 50°
34.

In the figure above, $\mathrm{XYZ}=\mathrm{YTZ}=90^{\circ}, \mathrm{XT}=9 \mathrm{~cm}$ and $T Z=16 \mathrm{~cm}$. Find YZ
A. $\quad 25 \mathrm{~cm}$
B. $\quad 20 \mathrm{~cm}$
C. 16 cm
D. $\quad 9 \mathrm{~cm}$
35. Two chords QR and NP of a circle intersect inside the circle at X . if $\mathrm{RQP}=37^{\circ}, \mathrm{RQN}=49^{\circ}$ and $\mathrm{QPN}=35^{\circ}$, find PRQ
A. $\quad 35^{\circ}$
B. $\quad 37^{0}$
C. $\quad 49^{\circ}$
D. $\quad 59^{\circ}$

In the figure above, find the value of x .
A. $\quad 110^{\circ}$
B. $\quad 100^{\circ}$
C. $\quad 90^{\circ}$
D. $\quad 80^{\circ}$
37.

In the figure above, PQRS is a rectangle. If the shaded area is 72 sq.cm find h
A. $\quad 12 \mathrm{~cm}$
B. $\quad 10 \mathrm{~cm}$
C. $\quad 8 \mathrm{~cm}$
D. 5 cm
38. The sine, cosine and tangent of 210° are respectively
A. $-1 / 2, \sqrt{3} / 2, \sqrt{3} / 3$
B. $1 / 2, \sqrt{3} / 2 \sqrt{3} / 3$
C. $\sqrt{3} / 2, \sqrt{3} / 3, \quad 1$
D. $3 / 2, \sqrt{1} / 2 \quad 1$
39. If $\tan \mathrm{q}=\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right) / 2 \mathrm{mn}$, find $\sec \mathrm{q}$
A. $\quad\left(m^{2}+n^{2}\right) /\left(m^{2}-n^{2}\right)$ B
$\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right) / 2 \mathrm{mn}$
C. $\quad m n / 2\left(m^{2}-n^{2}\right) \quad$ D. $\quad m^{2} n^{2} /\left(m^{2}-n^{2}\right)$
40. From two points X and $\mathrm{Y}, 8 \mathrm{~m}$ apart, and in line with a pole, the angle of elevation of the top of the pole are 30° and 60° respectively. Find the height of the pole, assuming that X, Y and the foot of the pole are on the same horizontal plane.
A. $\quad 4 \mathrm{~m}$
B. $8 \sqrt{ } 3 / 2 \mathrm{~m}$
C. $\quad 4 \sqrt{ } 3 m$
D. $8 \sqrt{ } 3 m$
41. A room is 12 m long. 9 m wide and 8 m high. Find the cosine of the angle which a diagonal of the room makes with the floor of the room
A. $\quad 15 / 17$
B. $\quad 8 / 17$
C. $8 / 15$
D. $12 / 17$
42. What is the circumference of radius of the earth?
A. $\quad \mathrm{R} \cos \mathrm{q}$
B. $\quad 2 p R \cos q$
C. $\quad R \sin q$
D. $\quad 2 \mathrm{pR} \sin \mathrm{q}$
43. The base of a pyramid is a square of side 8 cm . If its vertex is directly above the centre, find the height, given that the edge is 4.3 cm
A. 6 cm
B. 5 cm
C. $\quad 4 \mathrm{~cm}$
D. $\quad 3 \mathrm{~cm}$
44.

The figure above is an example of the construction of a A. perpendicular bisector to a given straight line B. perpendicular from a given point to a given line C. perpendicular to a line from a given point on that line
D. given angle.
45. What is the locus of the mid-points of all chords of length 6 cm within a circle of radius 5 cm and with centre 0 .
A. A circle of radius 4 cm and with centre O
B. The perpendicular bisector of the chords
C. A straight line passing through center O
D. A circle of radius 6 cm and with centre O
46. Taking the period of daylight on a certain day to be from 5.30a.m to 7.00p.m, calculate the period of daylight and of darkness on that day
A. $187^{\circ} 30^{\prime} 172^{\circ} 30^{\prime}$ B.
$135^{\circ} 225$ '
C. $202^{\circ} 30^{\prime} 157^{\circ} 30^{\prime}$ D. $195^{\circ} 165^{\prime}$
47. The goals scored by 40 football teams from three league divisions are recorded below

teams?
A. 21
B. 40
C. $\quad 91$
D. 96
48. The numbers $3,2,8,5,7,12,9$ and 14 are the marks scored by a group by a group of students in a class test if P is the mean and Q the median the $\mathrm{P}+\mathrm{Q}$ is
A. 18
B. $\quad 17 \frac{1}{2}$
C. 16
D. 15
49. Below are the scores of a group of students in a music test

Scores	1	2	3	4	5	6	7	8	9
No. of students	3	6	10	8	6	5	2	4	12

or equal to x, find $\mathrm{CF}(6)$
A.
40
B. $\quad 38$
C. 33
D. 5
50. Find the probability of selecting a figure which is parallelogram from a square, a rectangle, a rhombus, a kite and a trapezium
A. $3 / 5$
B. $2 / 5$
C. $4 / 5$
D. $1 / 5$

Mathematics 1988

1. Simplify $\left(1 \frac{1 /(2)}{4} 1\right.$ of 32$)$
A. $3 / 256$
B. $3 / 32$
C. 6
D. 85
2. If x is the addition of the prime numbers between 1 and 6 , and y the H. C.F of $6,9,15$, find the product of x and y
A. 27
B. $\quad 30$
C. 33
D. $\quad 90$
3. A 5.0 g of salts was weighed by Tunde as 5.1 g . what is the percentage error?
A.
B. 2
C. 2
D. 0.2
4. Find correct to one decimal place, 0.24633/0.0306
A. 0.8
B.
C. $\quad 8.0$
D. $\quad 8.1$
5. Two sisters, Taiwo and Kehinde, own a store. The ratio of Taiwo's share to Kehind's is 11:9. later Kehinde sells $2 / 3$ of her share to Taiwo for \#720.00. Find the value of the store.
$\begin{array}{lll}\text { A. } & \# 1,080.00 \mathrm{~B} . & \# 2,400.00 \\ \text { C. } & \# 3,000.00 \mathrm{D} . & \# 3,600.00\end{array}$
6. A basket contains green, black and blue balls in the ratio 5:2:1. if there are 10 blue balls, find the corresponding new ratio when 10 green and 10black balls are removed from the basket.
A. $1: 1 ; 1$
B. $\quad 4: 2: 1$
C. \quad 5:1:1
D. $\quad 4: 1: 1$
7. A taxpayer is allowed $1 / 8^{\text {th }}$ of his income tax free, and pays 20% on the remainder. If he pays \#490. 00 tax, what is his income?
A. $\# 560.00$
B. $\# 2,450.00$
C. $\# 2,800.00$
D. \#3,920.00
8. Evaluate $\left(8^{1 / 3} \times 5^{2 / 3}\right) / 10^{2 / 3}$
A. $2 / 5$
B. $5 / 3$
C. $\quad 2 \sqrt{ } 5$
D. $3 \sqrt{5}$
9. If $\log _{10} 2=0.3010$ and $\log _{10} 3=0.4771$, evaluate, without using logarithm tables $\log _{10} 4.5$
A. 0.3010
B. $\quad 0.4771$
C. 0.6352
D. 0.9542
10. Find m such that $(m, 3)(1-\sqrt{ } 3)^{2}=6-\sqrt{ } 3=6-2 \sqrt{ } 3$
A. $\quad 1$
B. 2
C. 3
D. 4
11. The thickness of an 800 -paged book is 18 mm . Calculate the thickness of one leaf of the book giving your answer in metres and in standard form.
A. $\quad 2.25 \times 10^{-4} \mathrm{~m}$
B. $\quad 4.50 \times 10^{-4} \mathrm{~m}$
C. $\quad 2.25 \times 10^{-5} \mathrm{~m}$
D. $\quad 4.50 \times 10^{-5} \mathrm{~m}$
12. \quad Simplify $\frac{(x+2)}{(x+1)}-\frac{(x-2)}{(x+2)}$
A. $\frac{3}{x+1}$
B. $\frac{3 x+2}{(x+1)(x+2)}$
C. $\frac{5 x+6}{(x+1)(x+2)}$
D. $\frac{2 x 2+5 x+2}{(x+1)(x+2)}$
13. If $1 / p=\left(a^{2}+2 a b+b^{2}\right)$

$1 / q=$| $\frac{(a-b)}{(a+b)}$ | and |
| :--- | :--- |
| $\left(a^{2}-2 a b+b^{2}\right)$ | find p / q |

A. $\frac{a+b}{a-b}$
B. 1
C. $\frac{a-b}{a+b}$
D. $\frac{a^{2}-b^{2}}{a^{2}-b^{2}}$
14. If x varies inversely as the cube root of y and $x=1$ when $y=8$ find y when $x=3$
A. $1 / 3$
B. $2 / 3$
C. $8 / 27$
D. $4 / 9$
16. If $g(y)=y-3 / 11+11 / y^{2}-9$ what is $g(y+3)$?
A. $\frac{y}{11}+\frac{11}{y(y+6)}$
B. $\quad \frac{y}{11}+\frac{11}{y(y+3)}$
C. $\frac{y+30}{11}+\frac{11}{y(y+3)}$
D. $\frac{y+3+}{11} \frac{11}{y(y-6)}$
17. Factorize completely $(x 2+x)^{2}(2 x+2)^{2}$
A. $\quad(x+y)(x+2)(x-2)$
B. $(x+y)^{2}(x-2)^{2}$
C. $\quad(x+1)^{2}(x+2)^{2}$
D. $(x+1)^{2}(x+2)^{2}(x-2)$
18. \quad Simplify $\frac{(x-y)}{\left(x^{1 / 3}-y^{1 / 2}\right)}$
A. $x^{2}=x y+y^{2}$
B. $x^{2 / 3}+x^{1 / 3}+y^{2 / 3}$
C. $x^{2 / 3}-x^{1 / 3} y^{1 / 3}-y^{2 / 3} D$.
$x^{2}-x y+y^{2}$
19. Solve the following equation for x

$$
\underline{x}^{2}+\frac{2 x}{r^{2}}+1=0
$$

A. $\quad r^{2}$
B. $\quad 1 / \mathrm{r}^{2}$
C. $-1 / \mathrm{r}^{2}$
D. $1 / r$
20. List the integral values of x which satisfy the inequality $1<5<-2 \mathrm{x}<7$
A. $\quad-1,0,1,2$
B. $\quad 0,1,2,3$
C. $-1,0,1,2,3$,
D. $-1,0,2,3$
21. Given value that $\frac{3 x-5 y-3=0}{2 y-6 x+5=0}$ the value of (x, y) is
A. $(-1 / 8,19 / 24)$
B. $(8,24 / 10)$
C. $(-8,24 / 19)$
D. $(19 / 24,-1 / 8)$
22. The solution of the quadratic equation

$$
b x^{2}+q x+b=0
$$

A $-b \pm \sqrt{b^{2}}-4 a c$
B $-\mathrm{b} \pm \mathrm{p}^{2}-4 \mathrm{pb}$

C| $\frac{2 a}{-q \pm \sqrt{q^{2}-4 b} p}$ |
| :---: |
| $2 p$ |

$D \frac{2 a}{-q \pm \sqrt{p^{2}-4 b} p}$
23. Simplify $1+1$

$$
\left(x^{2}+5 x+6\right) \quad\left(x^{2}+3 x+2\right)
$$

A. $\frac{x+3}{(x+1)(x+2)}$
B. $\frac{1}{(x+1) x+2) x+3)}$
C. $\frac{2}{(x+1)(x+3)}$
D. $\frac{4}{(x+1)(x+3)}$
24. Evaluate $\frac{\left(4 a^{2}-4 a b^{2}\right)}{\left(2 a^{2}+5 a b-7 b^{2}\right)}$
A. $\frac{a-b}{2 a+b}$
B. $\frac{2 a+7 b}{a-b}$
C. $2 \mathrm{a}-7 \mathrm{~b}$
D. $\frac{2 a-7 b}{a-b}$
15. If $a=-3, b=2, c=4$, calculate $\left(a^{3}-b^{3}-c^{1 / 2}\right)$
A. $\quad 37$
B. $-37 / 5$
C. $37 / 5$
D. -37 (b-1-c)

Using the graph to answer questions 25 and 26

25. What is the solution of the equation $x^{2}-x-1=0$?
A. $\quad \mathrm{x}=1.6$ and $\mathrm{x}=-0.6$
B. $x=-1.6$ and $x=0.6$
C $\quad x=1.6$ and $x=0.6$
D. $x=-1.6$ and $x=-0.6$
26. For what values of x is the curve $y=\left(x^{2}+3\right) /(x+4)$
A. $\quad-3<x<0$
B. $\quad-3<x<0$
C. $0<x<3$
D. $\quad 0<x<3$
27. The solution of $x^{2}-2 x-10$ are the points of intersection of two graphs. If one of the graphs is $y=2+x-x^{2}$, find the second graph.
A. $y=1-x$
B. $y=1+x$
C. $y=x-1$
D. $y=3 x+3$
28. If the sum of the $8^{\text {th }}$ and $9^{\text {th }}$ terms of an arithmetic progression is 72 and the $4^{\text {th }}$ term is -6 , find the common difference.
A. 4
B. 8
C. $\quad 6^{2 / 3}$
D. $\quad 91 / 3$
29. If 7 and 189 are the first and fourth terms of a geometric progression respectively find the sum of the first three terms of the progression.
A. 182
B. $\quad 91$
C. 63
D. 28
30.

In the figure above, PQRS is a circle. If chords QR and $R S$ are equal, calculate the value of x
A. $\quad 80^{\circ}$
B. $\quad 60^{\circ}$
C. $\quad 45^{0}$
D. $\quad 40^{\circ}$
31.

In the figure above, PQ is parallel to ST and $\mathrm{QRS}=40^{\circ}$. find the value of x
A. 55
B. 60
C. 65
D. 75
32. For which of the following exterior angles is a regular polygon possible?
i 35° ii 18° iii. 115°
A. i and ii
B. ii only
C. ii and iii
D. iii only
33.

In the figure above, $\mathrm{PS}=7 \mathrm{~cm}$ and $\mathrm{RY}=9 \mathrm{~cm}$. If the area of parallelogram PQRS is $56 \mathrm{~cm}^{2}$, find the area of trapezium PQTS.
A. $\quad 56 \mathrm{~cm}^{2}$
B. $\quad 112 \mathrm{~cm}^{2}$
C. $120 \mathrm{~cm}^{2}$
D. 176^{2}
34. A quadrilateral of a circle of radius 6 cm is cut away from each corner of a rectangle 25 cm long and 18 cm wide. Find the perimeter of the remaining figure
A. $\quad 38 \mathrm{~cm}$
B. $\quad(38+12 \mathrm{p}) \mathrm{cm}$
C. (86-12p)cm
D. $(86-6 p) \mathrm{cm}$
35.

In the figure above $\mathrm{STQ}=\mathrm{SRP}, \mathrm{PT}=\mathrm{TQ}=6 \mathrm{~cm}$ and QS $=5 \mathrm{~cm}$. Find SR.
A. $47 / 5$
B. 5
C. $37 / 5$
D. $22 / 5$
36. Four interior angles of a pentagon are $90^{\circ}-x^{0}, 90^{\circ}+x^{0}$, $10^{0}-2 \mathrm{x}^{0}, 110^{0}+2 \mathrm{x}^{0}$. find the fifth interior angle.
A. $\quad 110^{\circ}$
B. $\quad 120^{\circ}$
C. $\quad 130^{\circ}$
D. $\quad 140^{\circ}$

In the figure above, $\mathrm{PS}=\mathrm{RS}=\mathrm{QS}$ and $\mathrm{QSR}=50^{\circ}$. find QPR.
A. $\quad 25^{0}$
B. $\quad 40^{\circ}$
C. 50°
D. $\quad 65^{0}$
38.

In the figure above, $X R$ and $Y Q$ are tangents to the circle $Y Z X P$ if $Z X R=45^{\circ}$ and $Y Z X=55^{\circ}$ find $Z Y Q$.
A. $\quad 135^{\circ}$
B. $\quad 125^{\circ}$
C. $\quad 100^{\circ}$
D. 90°
39. From a point $14 \sqrt{ } 3$ metres away from a tree, a man discovers that the angle of elevation of the tree is 30°. If the man measures this angle of elevation from a point 2 meters above the ground how high is the tree?
A. $\quad 12 \mathrm{~m}$
B. $\quad 14 \mathrm{~m}$
C. $\quad 14 \sqrt{3} \mathrm{~m}$
D. 16 m
40. Alero starts a 3 km walk from P on a bearing 023°. she then walks 4 km on a bearing 113° to Q what is the bearing of Q from P ?
A. $\quad 26^{0} 52^{\prime}$
B. $\quad 52^{\circ} 8^{\prime}$
C. $\quad 76^{\circ} 8^{\prime}$
D. $\quad 90^{\circ}$
41. If $\cot q=x / y, f i n d \operatorname{cosec} q$
A. $1 / y\left(x^{2}+y\right)$
B. $\sqrt{(x} / \mathrm{y})$
C. $1 / \mathrm{y}\left(\mathrm{x}^{2}+\mathrm{y}\right)$
D. y / x
42. In triangle $\mathrm{PQR}, \mathrm{PQ}=1 \mathrm{~cm}, \mathrm{QR}=2 \mathrm{~cm}$ and $\mathrm{PQR}=120^{\circ}$. Find the longest side of the triangle
A. 3
B. $\quad 3 \sqrt{7 / 7}$
C. $\quad 3 \sqrt{7}$
D. $\quad \sqrt{7}$
44. If a metal pipe 10 cm long has an external diameter of 12 cm and a thickness of 1 cm , find the volume of the metal used in making the pipe.
A. $120 \mathrm{pcm}^{3}$
B. $\quad 110 \mathrm{pcm}^{3}$
C. $60 \mathrm{pcm}^{3}$
D. $50 \mathrm{pcm}{ }^{3}$

In the figure above, a solid consists of a hemisphere surmounted by a right circular cone with radius 3.0 cm and height 6.0 cm . find the volume of the solid.
A. $\quad 18 \mathrm{pcm}^{3}$
B. $\quad 36 \mathrm{pcm}^{3}$
C. $\quad 54 \mathrm{pcm}^{3}$
D. $\quad 108 \mathrm{pcm}^{3}$
46. PQR is a triangle in which $\mathrm{PQ}=10 \mathrm{ccm}$ and $\mathrm{QPR}=60^{\circ} . \mathrm{S}$ is a point equidistant from P and Q . also S is a point equidistant from PQ and PR. If U is the foot of the perpendicular from S on $P R$, find the length $S U$ in cm to one decimal place.
A. $\quad 2.7$
B. $\quad 2.9$
C. $\quad 3.1$
D. $\quad 3.3$
47. In a class of 150 students, the sector in a pie chart representing the students offering Physics has angle 12^{0}. How many students are offering Physics?
A. 18
B. 15
C. 10
D. 5
48. If x and y represents the mean and the median respectively of the following set of numbers; 11 , $12,13,14,15,16,17,18,19,21,$. Find x / y correct to one decimal place.
A. $\quad 1.6$
B. $\quad 1.2$
C. $\quad 1.1$
D. $\quad 1.0$
49.

Score (x)	0	1	2	3	4	5	6
Frequency (/)	7	11	6	7	7	5	3

In the distribution above, the mode and the median respectively are
A. $\quad 1.3$
B. $\quad 1.2$
C. $\quad 3.3$
D. 0.2
50. If two dice are thrown together, what is the probability of obtaining at least a score of 10 ?
A. $\quad 1 / 6$
B. $\quad 1 / 12$
C. $5 / 6$
D. $11 / 12$

1. Which of the following is in descending order?
A. $\quad 9 / 10,4 / 5,3 / 4,17 / 10 \quad$ B. $4 / 5,9 / 10,3 / 4,17 / 20$
C. $6 / 10,17 / 20,4 / 5,3 / 4 \quad$ D. $4 / 5,9 / 10,17 / 10,3 / 4$
2. Evaluate 2, 700, $000 \times 0.03,18,000$
A. $\quad 4.5 \times 10^{\circ}$
B. $\quad 4.5 \times 10^{1}$
C. $\quad 4.5 \times 10^{2}$
D. $\quad 4.5 \times 10^{3}$
3. The prime factors of 2,520 are
A. $2,9,5$,
B. $\quad 2,9,7$,
C. $2,3,5,7$,
D. $2,3,7,9$,
4. If $12_{\mathrm{e}}=\mathrm{X}_{7}$ find x where $\mathrm{e}=12$
A. 20
B. $\quad 15$
C. $\quad 14$
D. 12
5. \quad Simplify $\left.3 \sqrt{ } 64 r^{-6}\right)^{1 / 2}$
A. $\quad \mathrm{r}$
B. 2 r
C. $1 / 2 \mathrm{r}$
D. $2 / r$
6. What is the difference between 0.007685 correct to three significant figures and 0.007685 correct to four places of decimal?
A. $\quad 10^{-5}$
B. $\quad 7 \times 10^{-4}$
C. 8×10^{-5}
D. 10^{-6}
7. If $a: b=5: 8, x: y=25: 16$, evaluate $a / x: b / y$
A. $\quad 125: 128$
B. $\quad 3: 5$
C. $\quad 3: 4$
D. $\quad 2: 5$
8. Oke deposited \#800.00 in the bank aat the rat of $12_{1 / 2} \%$ simple interest. After some time the total amount was one and half times the principal. For how many years was the money left in the bank
A. 2
B. 4
C. $\quad 5^{1} / 2$
D. 8
9. If the surface area of a sphere is increased by 44%. Find the percentage increase in its diameter.
A. 44
B. $\quad 30$
C. 22
D. 20
10. Simplify 4- 1
$(2-\sqrt{ } 3)$
A. $\quad 2 \sqrt{ } 3$
B. $\quad-2 ., \sqrt{ } 3$
C. $\quad-2+\sqrt{ } 3$
D. $\quad 2,-\sqrt{ } 3$
11. Find p in terms of q if $\log _{3} \mathrm{p}+3 \log _{3} \mathrm{q}=3$
A. $(3)^{3}$
B. $(\mathrm{q})^{1 / 3}$
(q)
(3)
C. $\quad\left(q^{13}\right.$
D. $(3)^{1 / 3}$
(3)
(q)
12. What are the values of y which satisfy the equation $9^{y}-4(3 y)+3=0$
A. $\quad-1$ and 0
B. $\quad-1$ and 1
C. $\quad 1$ and 3
D. $\quad 0$ and 1
13. Make R the subject of the formula

$$
S=\sqrt{ }(\underline{2}+T)
$$

A. $R=\frac{T}{\left(T S^{2}-1\right)}$
B. $\frac{\mathrm{T}}{2\left(\mathrm{TS}^{2}-1\right)}$
C $\quad \mathrm{R}=\frac{\mathrm{T}}{\left(\mathrm{TS}^{2}+1\right)}$
D. $\frac{T}{2\left(\mathrm{TS}^{2}+1\right)}$
14. Find the value of the expression

$$
\frac{32}{81^{\times 3}}-\frac{64}{x^{\times 2}} \frac{81}{16} \quad \text { when } x=-3 / 4
$$

A. $\quad 10^{1 / 2}$
B. $\quad 10 \frac{1}{6}$
C. $33 / 8$
D. $\quad-13 \frac{1}{2}$
15. The cost of dinner for a group of students is partly cconstant and partly varies directly as the number of students. If the cost is $\# 74.00$ when the number of students is 20 , and $\# 96.00$ when the number is 30 , find the cost when there are 15 students.
A. $\# 68.50$
B. $\# 63.00$
C. $\# 60.00$
D. \#52.00
16. $\operatorname{If} f(x)=2 x^{2}+5 x+3$, find $f(x+1)$
A. $\quad 2 x^{2}-x$
B. $\quad 2 x^{2}-x+10$
C. $\quad 4 x^{2}+3 x+2$
D. $4 x^{2}+3 x+12$
17. Solve the positive number x such that

$$
2^{(x 3-x 2-2 x)}=1
$$

A. 4
B. 3
C. 2
D. 1
18. Simplify $\left(32 x-4 x^{2}\right)$
A. $\quad 2(x-9)$
B. $\quad 2(9+x)$
C. $\quad 81-x^{2}$
D. $\quad-2(x-9)$
19. Factorize completely $y^{3}-4 x y+x y^{3}-4 y$
A. $\quad(x+x y)(y+2)(y-2)$
B. $\quad(y+x y)(y+2)(y-2)$
C. $\quad y(1+x)(y+2)(y-2)$
D. $y(1-x)(y+2)(y-2)$
20. If one of $x^{3}-8^{-1}$ is $x-2^{-1}$, the other factors is
A. $\quad x^{2}+2^{-1} x-4^{-1}$
B. $\quad x^{2}-2^{-1} x-4^{-1}$
C. $\quad x^{2}+2^{-1} x+4^{-1}$
D. $\quad x^{2}+2^{-1} x-4^{-1}$
21. Factorize $4 a^{2}+12 a b-c^{2}+9 b^{2}$
A. $\quad 4 a(a-3 b)+(3 b-c)^{2}$
B. $\quad(2 a+3 b-c)(2 a+3 b+c)$
C. $\quad(2 a-3 b-c)(2 a-3 b+c)$
D. $\quad 4 a(a-3 b)+(3 b+c)^{2}$
22. What are K and L respectively if $1 / 2(3 y-4 x)^{2}=\left(8 x^{2}+\right.$ $\mathrm{kxy}+\mathrm{Ly}^{2}$)
A. $\quad-12,9 / 2$
B. $-6,9$
C. 6,9
D. $\quad 12,9 / 2$

Solve the pair of equation for x and y respectively
$2 x^{-1}-3 y^{-1}=4$
$4 x^{-1}+y^{-1}=1$
A. $\quad-1,2$
D. $\quad 2,-1$
24. What value of Q will make the expression $4 x^{2}+5 x+Q$ a complete square?
A. $25 / 16$
B. $25 / 64$
C. $5 / 8$
D. $5 / 4$
25. Find the range of values of r which satisfies the following inequality, where a, b and c are positive. $\mathrm{r} / \mathrm{a}+\mathrm{r} / \mathrm{b}+\mathrm{r} / \mathrm{c}>1$
A. $\quad r>\frac{a b c}{b c+a c+a b}$
B. $r>a b c$
C. $r>1 / a+1 / b+1 / c$
D. $\quad r>1 / a b c$
26.

Express $\frac{1}{(\mathrm{x}+1)} \quad-\quad \frac{1}{(\mathrm{x}-2)}$
A. $\frac{-3}{(x+1)(2-x)}$
B. $\frac{3}{(x+1) 2-X)}$
C. $\frac{-1}{(x+1)(x-2)}$
D. $\frac{1}{(x+1)(x-2)}$
27. $\frac{\text { Simplify } x-(x+1)^{1 / 2}}{(x+1)(x+1)^{1 / 2}}$
A. $\frac{1}{x+1}$
B. $-\frac{1}{\mathrm{x}+1}$
C. $\frac{1}{\mathrm{x}}$
D. $\frac{1}{x+1}$
28.

On the curve above, the points at which the gradient of the curve is equal to zero are
A. c.d.f.i.l
B. b.e.g.j.m
C. a.b.c.d.f.i.j.l.
D. c.d.f.h.i.l
29. The sum of the first two terms of a geometric progression is x and the sum of the last two terms is y. if there are n terms in all, then the common ratio is
A. $\quad \mathrm{x} / \mathrm{y}$
B. y / x
C. $\quad(x / y)^{1 / 2}$
D. $\quad(y / x)^{1 / 2}$
30. If $-8, m, n, 19$ in arithmetic progression, find (m, n)
A. $\quad 1,10$
B. 2,10
C. 3,13
D. 4,16
31.

$M N$ is a tagent to the given circle at $M, M R$ and $M Q$ are two chords. If QMN is 60° and MNQ is 40°, find RMQ
A. $\quad 120^{\circ}$
B. $\quad 11^{0}$
C. $\quad 60^{\circ}$
D. $\quad 20^{\circ}$

In the diagram above, HK is prallel to $\mathrm{QR}, \mathrm{PH}=4 \mathrm{~cm}$ and $\mathrm{HQ}=3 \mathrm{~cm}$. What is the ratio of $\mathrm{KR} ; \mathrm{PR}$?
A. $\quad 7: 3$
B. $\quad 3: 7$
C. $3: 4$
D. $\quad 4: 3$
33. A regular polygon of $(2 \mathrm{k}+1)$ sides has 140° as the size of each interior angel. Find K.
A. 4
B. $\quad 4^{1} / 2$
C. 8
D. $\quad 81 / 2$

If PST is a straight line and $\mathrm{PQ}=\mathrm{QS}=\mathrm{SR}$ in the above diagram, find y
A. $\quad 24^{0}$
B. $\quad 48^{\circ}$
C. $\quad 72^{0}$
D. $\quad 84^{\circ}$
35.

In the above diagram PQ is parallel to RS and QS bisects $P Q R$. If $P Q R$ is 60°, find x
A. $\quad 30^{\circ}$
B. $\quad 40^{\circ}$
C. $\quad 60^{\circ}$
D. 120°
36. PQRS is a rhombus. If $\mathrm{PR}^{2}+\mathrm{QS}^{2}=\mathrm{kPQ}^{2}$ Determine k .
A. $\quad 1$
B. 2
C. 3
D. 4
37. In $\mathrm{DXYZ}, \mathrm{Y}=\mathrm{Z}=30^{\circ}$ and $\mathrm{XZ}=3 \mathrm{~cm}$ find YZ
A. $\sqrt{3} / 2 \mathrm{~cm}$
B. $\quad 3 \sqrt{3} / 2 \mathrm{~cm}$
C. $\quad 3 \sqrt{3} \mathrm{~cm}$
D. $2 \sqrt{ } 3 \mathrm{~cm}$
38. In DPQR, the bisector of QPR meets QR at S . the line PQ is produced to V and the bisector of VQS meets PS produced at T . if $\mathrm{QPR}=46^{\circ}$ and $\mathrm{QST}=75^{\circ}$, calculate QTS
A.
41^{0}
B. $\quad 52^{0}$
C. $\quad 64^{0}$
D. $\quad 82^{0}$
39.

A. If PQR is a straight line with $\mathrm{OS}==\mathrm{QR}$, calculate TPQ , if QT//SR and TQS $=3 y^{\circ}$.
A. $\quad 62^{\circ}$
B. $\quad 56^{\circ}$
C. $\quad 20^{2} /{ }_{3}{ }^{0}$
D. $\quad 182 /{ }_{3}{ }^{0}$
40.

If $x: y=5: 12$ and $z=52 \mathrm{~cm}$, find the perimeter of the triangle.
A. $\quad 68 \mathrm{~cm}$
B. $\quad 84 \mathrm{~cm}$
C. 100 cm
D. 120 cm
41. The pilot of an aeroplane, flying 10km above the ground in the direction of a landmark, views the landmark to have angle of depression of 35° and 55°. find the distance between the two points of observation
A. $\quad 10\left(\sin 35^{\circ}-\sin 55^{\circ}\right)$
B. $\quad 10\left(\cos 35^{\circ}-\cos 55^{\circ}\right)$
C. $\quad 10\left(\tan 35^{\circ}-\tan 55^{\circ}\right)$
D. $\quad 10\left(\cot 35^{\circ}-\cot 55^{\circ}\right)$
42. $\quad \mathrm{A} \sin ^{2} \mathrm{x}-3=0$, find x if $0<\mathrm{x}<90^{\circ}$
A. $\quad 30^{\circ}$
B. $\quad 45^{0}$
C. $\quad 60^{\circ}$
D. $\quad 90^{\circ}$
43. A square tile has side 30 cm . How many of these tiles cover a rectangular floor of length 7.2 cm and width 4.2 m ?
A. 336
B. $\quad 420$
C. 576
D. $\quad 720$
44. A cylindrical metal pipe 1 m long has an outer diameter of 7.2 cm and an inner diameter of 2.8 cm . find the volume of metal used for the cylinder.
A. $440 \mathrm{pcm}^{3}$
B. $\quad 1,100 \mathrm{pcm}^{3}$
C. $4,400 \mathrm{pcm}^{3}$
D. $11,000 \mathrm{pcm}^{3}$

OXYZW is a pyramid with a square base such that OX $=\mathrm{OY}=\mathrm{OZ}=\mathrm{OW}=5 \mathrm{~cm}$ and $\mathrm{XY}=\mathrm{XW}=\mathrm{YZ}=\mathrm{WZ}=$ 6 cm . Find the height OT.
A. $\quad 2 \sqrt{ } 5$
B. 3
C. 4
D. $\sqrt{7}$
46. In preparing rice cutlets, a cook used 75 g of rice, 40 g of margarine, 105 g of meat and 20 g of bread crumbs. Find the angle of the sector which represents meat in a pie chart.
A. $\quad 30^{\circ}$
B. $\quad 60^{\circ}$
C. $\quad 112.5^{0}$
D. $\quad 157.5^{0}$
47. In a class of 30 students, the marks scored in an examination are displayed in the following histogram.

What percentage of the students scored more than 40\%
A.
14\%
B. 40%
C. $\quad 45 \frac{2}{3} \%$
D. $\quad 53 \frac{1}{3} \%$
48. In a family of 21 people, the average age is 14 years. If the age of the grandfather is not counted, the average age drops to 12 years. What is the age of the grandfather?
A. 35years
B. 40years
C. 42years
D. 54years
49. If n is the median and m is the mode of the following set of numbers, $2.4,2.1,1.6,2.6,2.6,3.7,2 ., 1,2.6$, then (n, m) is
A. $\quad(2.6,2.6)$
B. $\quad(2.5,2.6)$
C. $\quad(2.6,2.5)$
D. $\quad(2.5,2.1)$
50. The numbers are chosen at random from three numbers $1,3,6$. find the probability that the sum of the two is not odd.
A. $2 / 3$
B. $1 / 2$
C. $1 / 3$
D. $1 / 6$

1. Simplify $\frac{\left(4^{3 / 4}-6^{1 / 4}\right)}{\left(4^{1 / 5} \text { of } 1^{1 / 4}\right)}$
A. $\quad-7^{7} / 8$
B. $-2 / 7$
C. $-10 / 21$
D. $10 / 21$
2.

The H.C.F. of $a^{2} b x+a b x^{2}$ and $a^{2} b-b^{3}$ is
A. b
B. $\quad a+b$
C. $a(a+b)$
D. $\quad a b x\left(a^{2}-b^{2}\right)$
3. Correct $241.34\left(3 \times 10^{-3}\right)^{2}$ to 4 significant figures
A. 0.0014
B. 0.001448
C. 0.0022
D. 0.002172
4. At what rate would a sum of $\# 100.00$ deposited for 5 years raise an interest of \#7.50?
A. $1 \% \%$
B. $\quad 2 \frac{1}{2} \%$
C. 15%
D. 25%
5. Three children shared a basket of mangoes in such a way that the first child took $1 / 4$ of the mangoes and the second $3 / 4$ of the remainder. What fraction of the mangoes did the third child take?
A. $3 / 16$
B. $\quad 7 / 16$
C. $9 / 16$
D. $13 / 16$
6. Simplify and express in standard form

$$
(0.00275 \times 0.00640 /(0.025 \times 0.08)
$$

A. $\quad 8.8 \times 10^{-1} \mathrm{~B}$. 8.8×10^{2}
C. $\quad 8.8 \times 10^{-3} \mathrm{D} . \quad 8.8 \times 10^{3}$
7. Three brothers in a business deal share the profit at the end of contract. The first received $1 / 3$ of the profit and the second $2 / 3$ of the remainder. If the third received the remaining \#12.000.00, how much profit did they share?
A. \#60,000.00
B. $\# 54,000.00$
C. \#48,000.00
D. \#42,000.00
8. \quad Simplify $\sqrt{ } 160 r^{2}+\sqrt{ }\left(71 r^{4}+\sqrt{ } 100 r^{3}\right.$
A. $\quad 9 r^{2}$
B. $\quad 12 \sqrt{3} r$
C. 13 r
D. $\sqrt{13} \mathrm{r}$
9. Simplify $\sqrt{ } 27+3 / \sqrt{ } 3$
A. $\quad 4 \sqrt{ } 3$
B. $4 / \sqrt{ } 3$
C. $\quad 3 \sqrt{3}$
D. $3 \sqrt{ } / 4$
10. \quad Simplify $3 \log _{6} 9+\log _{6} 12+\log _{6} 64-\log _{6} 72$
A. 5
B. 7776
C. $\quad \log _{6} 31$
D. $\quad(7776)^{6}$
11. \quad Simplify $\left.\frac{(1+1}{x^{-1}+y^{-1}}\right)^{-1}$
A. $\quad x / y$
B. $\quad x y$
C. y / x
D. $\quad(x y)^{-1}$
12. If $\mathrm{a}=2, \mathrm{~b}=-2$ and $\mathrm{c}=-1 / 2$,
evaluate $\left(a b^{2}-b c^{2}\right)\left(a^{2} c-a b c\right)$
A. 0
B. -28
C. $\quad-30$
D. -34
13. Y varies inversely as X^{2} and X varies directly as Z^{2}. find the relationship between Y and Z , if C is a constant.
A. $\quad Z^{2} y=C$
B. $\quad \mathrm{Y}=\mathrm{CZ}^{2}$
C. $\quad \mathrm{Y}=\mathrm{CZ}^{2}$
D. $\quad \mathrm{Y}=\mathrm{C}$
14. Find the value of r in terms of p and q in the following equation
$\mathrm{P} / 2=(\mathrm{r} /(\mathrm{r}+\mathrm{q})$
A. $\quad \mathrm{r}=\mathrm{q}, \mathrm{p}^{2}$
B. $\frac{p q^{2}}{2-q^{2}}$
C. $r=\frac{p^{2} q^{2}}{2-p q}$
D. $\frac{p}{q(2-p)}$
15. If $f(x-4)=x^{2}+2 x+3$, find $f(2)$
A. 6
B. $\quad 11$
C. 27
D. 51
16. Factorize $9(x+y)^{2}-4(x-y)^{2}$
A. $\quad(x+y)(5 x+y)$
B. $\quad(x+y)^{2}$
C. $\quad(x+5 y)(5 x+y) \quad$ D. $\quad 5(x+y)^{2}$
17. If $a^{2}+b^{2}=16$ and $2 a b=7$ find all the possible values of ($\mathrm{a}-\mathrm{b}$)
A. $3,-3$
B. $\quad 2,-2$
C. $\quad 1,-1$
D. $3,-1$
18. Divide $x^{3}-2 x^{2}-5 x+6$ by $(x-1)$
A. $\quad x^{2}-x-6$
B. $\quad x^{2}-5 x+6$
C. $\quad x^{2}-7 x+6$
D. $x^{2}-5 x-6$
19. If $x+=4$, find the $x^{2}+1 / x$
A. 16
B. $\quad 14$
C. 12
D. $\quad 9$
20. What must be added to $4 x^{2}-4$ to make it a perfect square?
A. $-1 / x^{2}$
B. $1 / x^{2}$
C. 1
D. -1
21. Find the solution of the equation $x-8 \sqrt{ } x+15=0$
A. 3,5
B. $-3,-5$
C. 9,25
D. $-9,25$
22. The lengths of the sides of a right-angled triangle are $x \mathrm{~cm} .(3 x-1) \mathrm{cm}$ and $(3 x+1) \mathrm{cm}$. Find x
A. 5
B. 7
C. 8
D. 12
23. The perimeter of a rectangular lawn is 24 m , if the area of the lawn is $35 \mathrm{~m}^{2}$, how wide is the lawn?
A. $\quad 5 \mathrm{~m}$
B. $\quad 7 \mathrm{~m}$
C. 12 m
D. $\quad 14 \mathrm{~m}$
25. Simplify $\frac{x}{(x+y)}+\frac{y}{(x-y)}-\frac{x 2}{\left(x^{2}-y^{2}\right)}$
A. $\frac{x^{2}}{x^{2}-y^{2}}$
B. $\frac{y^{2}}{x^{2}-y^{2}}$
C. $\frac{x}{x^{2}-y^{2}}$
D. $\frac{y}{x^{2}-y^{2}}$
26. Given that $x^{2}+y^{2}+z^{2}=194$, calculate z if $\mathrm{x}=7$ and $\sqrt{ } \mathrm{y}=3$
A. $\quad \sqrt{10}$
B. 8
C. $\quad 12.2$
D. $\quad 13.4$
27. Find the sum of the first twenty terms of the arithmetic progression $\log a, \log a^{2}, \log a^{3}$
A. $\quad \log \mathrm{a}^{20}$
B. $\quad \log \mathrm{a}^{21}$
C. $\quad \log \mathrm{a}^{200}$
D. $\quad \log \mathrm{a}^{210}$
24. A carpainter charges \#40.00 per day for himself and \#10.00 per day for his assistant. If a fleet of a cars were painted for \#2,000.00 and the painter worked 10 days more than his assistant, how much did the assistant receive?
A. \#32.00
B. \#320.00
28. Find the sum of the first 18 terms of the progression 3, 6,12
A. $\quad 3\left(2^{17}-1\right)$
B. $\left.\quad 3\left(2^{18}\right)-1\right)$
C. $\quad 3\left(2^{18}+1\right)$
D. $\quad 3\left(2^{18}-1\right)$
29.

What is the equation of the quadratic function represented by the graph above?
A. $y=x^{2}+x-2$
B. $y=x^{2}-x-2$
C. $y=-x^{2}-x+2$
D.
$y=-x+x+2$
30. At what value of x is the function $x^{2}+x+1$ minimum?
A. $\quad-1$
B. $\quad-1 / 2$
C. $1 / 2$
D. 1
31.

In the diagram above, the area of PQRS is $73.5 \mathrm{~cm}^{2}$ and its height is 10.5 cm . find the length of PS if QR is onethird of PS.
A. $\quad 21 \mathrm{~cm}$
B. $\quad 17^{1} / 2 \mathrm{~cm}$
C. $\quad 14 \mathrm{~cm}$
D. $\quad 10^{1} / 2 \mathrm{~cm}$

The angle of a sector of a circle, radius 10.5 cm , is 48°. calculate the perimeter of the sector
A. $\quad 8.8 \mathrm{~cm}$
B. $\quad 25.4 \mathrm{~cm}$
C. $\quad 25.6 \mathrm{~cm}$
D. 29.8 cm
33.

In the figure above $\mathrm{PS}=\mathrm{QS}$ and $\mathrm{QSR}=100^{\circ}$, find QPR
A. $\quad 40^{\circ}$
B. $\quad 50^{\circ}$
C. $\quad 80^{\circ}$
D. 100°
34.

In triangle XYZ and $\mathrm{XQP}, \mathrm{XP}=4 \mathrm{~cm}, \mathrm{XQ}=5 \mathrm{~cm}$ and $\mathrm{PQ}=$ $\mathrm{QY}=3 \mathrm{ccm}$. Find ZY
A. $\quad 8 \mathrm{~cm}$
B. 6 ccm
C. $\quad 4 \mathrm{~cm}$
D. 3 cm
35. Find the length of a side of a rhombus whose diagonals are 6 cm and 8 cm .
A. $\quad 8 \mathrm{~cm}$
B. $\quad 5 \mathrm{~cm}$
C. $\quad 4 \mathrm{~cm}$
D. 3 cm
36. Each of the interior angles of a regular polygon is 140°. how many sides has the polygon?
A. $\quad 9$
B. 8
C. $\quad 7$
D. 5
37.

In the figure above, PQRS is a circle. If PQT and SRT are straight lines, find the value of x.
A. $\quad 59^{\circ}$
B. $\quad 77^{0}$
C. $\quad 103^{0}$
D. $\quad 121^{0}$
38. In a regular pentagon, $\mathrm{PQRST}, \mathrm{PR}$ intersects QS at O . calculate RQS.
A. $\quad 36^{\circ}$
B. $\quad 72^{0}$
C. $\quad 108^{0}$
D. 144^{0}
39. If $\cos q=12 / 13$, find $1+\cot ^{2} q$
A. $\quad 169 / 25$
B. $25 / 169$
C. $\quad 169 / 144$
D. $144 / 169$
40.

In the figure above, $\mathrm{YXZ}=300, \mathrm{XYZ}=105^{\circ}$ and $\mathrm{XY}=$ 8 cm . Calculate YZ .
A. $\quad 162 \sqrt{ } \mathrm{~cm}$
B. $\quad 8 \sqrt{ } 2 \mathrm{~cm}$
C. $\quad 4 \sqrt{ } 2 \mathrm{~cm}$
D. $\quad 2 \sqrt{ } 2 \mathrm{~cm}$
41.

In the figure above PQR is a semicircle. Calculate the area of the shaded region.
A. $\quad 125{ }^{2} / \mathrm{cm}^{2}$
B. $\quad 149^{2} / \mathrm{cm}^{2}$
C. $2431 /{ }_{7} \mathrm{~cm}^{2}$
D. $\quad 2671 /{ }_{2} \mathrm{~cm}^{2}$
42. A cylindrical pipe, made of metal is 3 cm , thick if the internal radius of the pipe is 10 cm . Find the volume of metal used in making 3 m of the pipe
A. $\quad 153 \pi \mathrm{~cm}^{3}$
B. $\quad 207 \pi \mathrm{~cm}^{3}$
C. $15,300 \pi \mathrm{~cm}^{3}$
D. $20,700 \pi \mathrm{~cm}^{3}$
43. If the height of two circular cylinders are in the ratio $2: 3$ and their base radii are in the ratio 9 . what is the ratio of their volume
A. $\quad 27: 32$
B. $\quad 27: 23$
C. $23: 32$
D. $21: 27$

Find the curved surface area of the frustrum in the figure.
A. $16 \sqrt{1} 0 \mathrm{~cm}$
B. $\quad 20 \sqrt{10}$
C. 24
D.
45. The locus of a point which moves so that it is equidistant from two intersecting straight lines is the A. perpendicular bisector of the two lines
B. angle bisector of the two lines
C. bisector of the two lines
D. line parallel to the two lines
$464,16,30,20,10,14$ and 26 are represented on a pie chart. Find the sum of the angles of the sectors representing all numbers equal to or greater than 16 .
A. $\quad 48^{\circ}$
B. $\quad 84^{\circ}$
C. $\quad 92^{0}$
D. 276°
47. The mean of ten positive numbers is 16 . when another number is added, the mean becomes 18. find the eleventh number.
A. 3
B. $\quad 16$
C. $\quad 18$
D. 30
48. Below are the scores of a group of students in a test.

Scores	1	2	3	4	5	6
No . of students	1	4	5	6	\mathbf{x}	2

If the average score is 3.5 , find the value of x.
A. $\quad 1$
B. 2
C. 3
D. 4
49. Two numbers are removed at random from the numbers $1,2,3$ and 4 . what is the probability that the sum of the numbers removed is even?
A. $2 / 3$
B. $\quad 1 / 2$
C. $1 / 3$
D. $\quad 1 / 4$
50. Find the probability that a number selected at random from 41 to 56 is a multiple of 9
A. $1 / 9$
B. $\quad 2 / 15$
C. $3 / 16$
D. $7 / 8$

1. Simplify $31 /{ }_{3}-1 \frac{1}{4} \mathrm{x}^{2 /} / 3+1^{2 / 5}$
A. $\quad 2^{17 / 30}$
B. $\quad 3^{9 / 10}$
C. $\quad 4^{1 / 10}$
D. $4^{11 / 36}$
2. If 2257 is the result of subtracting 4577 from 7056 in base n , find n .
A. 8
B. $\quad 9$
C. 10
D. 11
3. Find correct to 3 decimal places

| | $\left(\frac{1}{2} \div\right.$ | $\frac{1}{2}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 0.05 | 5.005 | - | (0.05×2.05) |
| A. | 99.998 | | B. | 98.999 |
| C. | 89.899 | | D. | 9.998 |

4. Express $62 / 3$ as a decimal correct to 3 significant figures.
A. $\quad 20.6$
B. $\quad 20.667$
C. $\quad 20.67$
D. 20.7
5. Factory P produces 20,000 bags of cement per day while factory Q produces 15,000 bags per day. If P reduces production by 5% and Q increases production by 5% determine the effective loss in the number of bags produced per day by the two factories.
A. 250
B. $\quad 750$
C. 1000
D. 1250
6. Musa borrows \#10.00 at 2% per month interest and repays \#8.00 after 4 months. However much does he still owe?
A. $\# 10.80$
B. $\# 10.67$
C. \#2.80
C. $\# 2.67$
7. If 3 gallons of spirit containing 20% water are added to 5gallons of another spirit containing 15% water, what percentage of the mixture is water?
A. $\quad 2{ }^{4} / 5$
B. $16^{7} / 8$
C. $181 / 8 \%$
D. $\quad 187 / 8$
8. What is the product of $27 / 5-(3)^{3}$ and (1/5)?
A. 5
B. 3
C. 1
D. $1 / 25$
9. Simplify $2 \log 2 / 5-\log 72 / 125+\log 9$
A. $\quad 1-4 \log 3$
B.
$-1+2 \log 3$
C. $\quad-1+5 \log 2$
D. $1-2 \log 2$
10. Rationalize $(2 \sqrt{ } 3+3 \sqrt{ } 2) /(3 \sqrt{ } 2-2 \sqrt{ } 3)$
A. $5-2 \sqrt{6}$
B. $5+2 \sqrt{6}$
C. $\quad 5 \sqrt{3}$
D. 5
11. $\operatorname{Simplify}(1 / 3+\sqrt{ } 5)-1 / 3-\sqrt{ } 5$
A.
$-1 / 2 \sqrt{5}$
B.
C. $\quad-1 / 4 \sqrt{5}$
D.
$1 / 2 \sqrt{5}$
12.

Multiply $\left(x^{2}-3 x-+1\right)^{2}$ by ($x-a$)
A. $\quad x^{3}-(3-a) x^{2}+(1+3 a) x-1$
B. $x^{3}-(3-a) x^{2}+3 a x-a$
C. $x^{3}-(3-a) x^{2}+(1+3 a)-a$
D. $x^{3}+(3-a) x^{2}+(1+3 a)-a$
13. Evaluate $\left(X y^{2}-X^{2} y\right)$

$$
\left(x^{2}-x y\right)
$$

$$
\text { when } x=-2 \text { and } y=3
$$

A. -3
B. $-3 / 5$
C. $3 / 5$
D. 3
14. A car travels from Calabar to Enugu, a distant of pkm with an average speed of ukm per hour and continues to Benin, a distance of qkm, with an average speed of wkm per hour. Find its average speed from Calabar to Benin.
A. $(p+q) /(u p+w q)$
B. $u+w$
C. $u w(p+q) /(w p+u q)$
D. $(w p+u q) /(u+w q)$
15. If w varies inversely as $u v / u+v$ and is equal to 8 when $u=2$ and $v=6$, find a relationship between u, v, w.
A. $\quad u p w=16(u+t)$
B. $\quad 16 \mathrm{ur}=3 \mathrm{w}(\mathrm{u}+\mathrm{t})$
C. $\quad u p w=12(u+t)$
D. $12 u p w=u+r$
16. If $g\left(x=x^{2}+3 x\right)$ find $g(x+1)-g(x)$
A. $\quad(x+2)$
B. $\quad 2(x+2)$
C. $\quad(2 x+1)$
D. $\quad(x+4)$
17. Factorize $\mathrm{m}^{3}-\mathrm{m}^{2}-\mathrm{m}+2$
A. $\quad\left(m^{2}+1\right)(m-2)$
B. $\quad(m+1)(m+1)(m+2)$
C. $\quad(m+1)(m+1)(m-2)$
D. $\left(m^{2}+2\right)(m-1)$
18. Factorize $1-(a-b)^{2}$
A. $\quad(1-a-b)(1-a-b)$
B. $(1-a+b)(1+a-b)$
C. $(1-a+b)(1-a+b)$ D. $(1-a-b)(1+a-b)$
19. Which of the following is a factor of $\mathrm{rs}+\mathrm{tr}-\mathrm{pt}-\mathrm{ps}$?
A. $\quad(\mathrm{p}-\mathrm{s})$
B. $(s-p)$
C. $\quad(r-p)$
D. $(r+p)$
20. Find the two values of y which satisfy the simultaneous equation $3 x+y=8$
$x^{2}+x y=6$
A. $\quad-1$ and 5
B. $\quad-5$ and 1
C. $\quad 1$ and 5
D. $\quad 1$ and 1
21. Find the range of values of x which satisfy the inequality $(x / 2+x / 3+x / 4)<1$
A. $x<12 / 13 B$.
C. $\mathrm{x}<9 \quad$ D. $\mathrm{x}<13 / 12$
22. Find the positive number n , such that thrice it s square is equal to twelve times the number.
A. $\quad 1$
B. 2
C. 3
D. 4
23. Solve the equation $(x-2)(x-3)=12$
A. 2,3
B. $\quad 3,6$
C. $-1,6$
D. 1,6
24. Simplify $\frac{(\sqrt{ } 1+x+\sqrt{x})}{(\sqrt{1+X}-\sqrt{x})}$
A. $1-2 x-2 \sqrt{ } \mathrm{x}(1+\mathrm{x})$
B. $1+2 \mathrm{x}+2 \sqrt{ } \mathrm{x}(1+\mathrm{x})$
C. $\sqrt{ } \mathrm{x}(1+\mathrm{x})$
D. $1+2 \mathrm{x}-2 \sqrt{ } \mathrm{x}(1+\mathrm{x})$
25. Evaluate $x^{2}\left(x^{2}-1\right)^{1 / 2}-\left(x^{2}-1\right)^{1 / 2}$
A. $\quad\left(x^{2}-1\right)^{1 / 2}$ B. $\quad\left(x^{2}-1\right)$
C. $\left.\left(x^{2}-1\right)\right)^{1}$
D. $\left(x^{2}-1\right)^{1 / 2}$
26. Find the gradient of the line passing through the points $(-2,0)$ and ($0,-4$)
A. 2
B. -4
C. -2
D. 4
27. At what value of x is the function $y=x^{2}-2 x-3$ minimum?
A. $\quad 1$
B. -1
C. -4
D. 4
28. What is the nth term of the progression $27,9,3, \ldots \ldots \ldots .$. ?
A. $\quad 27(1 / 3)^{\mathrm{n}-1}$
B. $\quad 3^{\mathrm{n}+2}$
C. $27+18(\mathrm{n}-1)$
D. $27+6(n-1)$
29. Find the sum of the 20 term in an arithmetic progression whose first term is 7 and last term is 117
A. 2480
B. $\quad 1240$
C. 620
D. 124
30.

In the figure above, find the value of x
A. $\quad 130^{\circ}$
B. $\quad 110^{\circ}$
C. $\quad 100^{\circ}$
D. $\quad 90^{\circ}$
31. The angles of a quadrilateral are $5 x-30,4 x+60,60-x$ and $3 x+61$. find the smallest of these angles.
A. $\quad 5 x-30$
B. $4 x+60$
C. $\quad 60-x$
D. $3 x+61$.
32. The area of a square is 144 sqcm . Find the length of its diagonal
A. $\quad 11 \sqrt{ } 3 \mathrm{~cm}$
B. 12 cm
C. $\quad 12 \sqrt{ } 2 \mathrm{~cm}$
D. 13 cm
33. One angle of a rhombus is 60°. the shorter of the two diagonals is 8 cm long. Find the length of the longer one
A. $\quad 8 \sqrt{3}$
B. $16 / \sqrt{3}$
C. $\quad 5 \sqrt{ } 3$
D. $10 / \sqrt{3}$
34. If the exterior angles of a pentagon are $x^{0},(x+5)^{0},(x+$ $10)^{0},(x+15)^{0}$ and $(x+20)^{0}$, find x
A. $\quad 118^{0}$
B. $\quad 72^{0}$
C. $\quad 62^{0}$
D. 36°
use the figure below to answer questions 35 and 36

PMN and PQR are two secants of the circle MQTRN and PT is a tangent
35. If $\mathrm{PM}=5 \mathrm{~cm}, \mathrm{PN}=12 \mathrm{~cm}$ and $\mathrm{PQ}=4.8 \mathrm{~cm}$, calculate the respective lengths of PR and PT in centimeters.
A. $\quad 7.3,5.9$
B. 7.7,12.5
C. $12.5,7.7$
D. 5.9,7.336.

If $P N R=110^{\circ}$ and $P M Q=55^{\circ}$, find MPQ .
A. $\quad 40^{\circ}$
B. $\quad 30^{\circ}$
C. $\quad 25^{\circ}$
D. $\quad 15^{0}$
37.

In the figure above, find the value of y
A. $\quad 28^{\circ}$
B. $\quad 122^{\circ}$
C. $\quad 150^{\circ}$
D. 152^{0}
38.

In the figure above, $\mathrm{PQ}=\mathrm{PR}=\mathrm{PS}$ and $\mathrm{SRTY}=68^{\circ}$. find QPS.
A.
136^{0}
B. 124^{0}
C. $\quad 112^{0}$
D. $\quad 68^{\circ}$
39. A flagstaff stands on the top of a vertical tower. A man standing 60 m away from the tower observes that the angles of elevation of the top and bottom of the flagstaff are 64° and 62° respectively. Find the length of a flagstaff.
A. $\quad 60\left(\tan 62^{\circ}-\tan 64^{\circ}\right)$
B. $\quad 60\left(\cot 64^{\circ}-\cot 62^{\circ}\right)$
C. $\quad 60\left(\cot 62^{\circ}-\cot 64^{\circ}\right)$
D. $\quad 60\left(\tan 64^{\circ}-\tan 62^{\circ}\right)$
40. Simplify $\cos ^{2} x\left(\sec ^{2} x+\sec ^{2} x \tan ^{2} x\right)$
A. $\quad \operatorname{Tan} \mathrm{x}$
B. $\quad \operatorname{Tan} x \sec x$
C. $\quad \operatorname{Sec}^{2} x$
D. $\quad \operatorname{Cosec}^{2} x$
41. If $\cos x=\sqrt{a} / b$, find $\operatorname{cosec} x$.
A. $\frac{b}{\sqrt{b-a}}$
B. $\sqrt{ } \frac{b}{a}$
C. $\frac{b}{\sqrt{b-a}}$
D. $\frac{\sqrt{ } \mathrm{b}-\mathrm{a}}{\mathrm{a}}$
42. From a point $Z, 60 \mathrm{~m}$, north of X , a man walks $600 ̈ 3 \mathrm{~m}$ eastwards to another point Y. find the bearing of y from x
A. $\quad 030^{0}$
B. $\quad 045^{0}$
C. 060°
D. 090°
43. A surveyor walks 500 m up a hill which slopes at an angle of 30°. calculate the vertical height through which he rises
A. $\quad 250 \mathrm{~m}$
B. 500 Ö $3 / 3 \mathrm{~m}$
C. $\quad 250 \ddot{O} 2 \mathrm{~m}$
D. $250 \ddot{O} 3 \mathrm{~m}$
44.

In the figure above, PQRS is a square of side 8 cm . What is the area of $\triangle U V W$?
A. $\quad 64$ sq.cm
B. $\quad 54 \mathrm{sq} . \mathrm{cm}$
C. 50 sq. cm
D. 10 sq.cm
45. Find the total area of the surface of a solid cylinder whose base radius is 4 cm and height is 5 cm .
A. $56 \mathrm{pcm}^{2}$
B. $\quad 72 \mathrm{pcm}^{2}$
C. $\quad 96 \mathrm{pcm}^{2}$
D. $192 \mathrm{pcm}^{2}$
46.

Find the volume of the figure above.
A. $\quad \mathrm{pa}^{2} / 3$
B. $\quad \mathrm{pa}^{2} \mathrm{y}$
C. $\mathrm{pa}^{2} / 3(\mathrm{y}+\mathrm{x})$
D. $\quad\left(1 / 3 \mathrm{pa}^{2} \mathrm{x}+\mathrm{y}\right)$
47. 3% of a family's income is spent on electricity. 9% on food. 20% on transport, 11% on education and 7% on extended family. The angles subtended at the centre of the pie chart under education and food are respectively
A. $\quad 76.8^{0}$ and 25.2^{0}
B. $\quad 10.8^{0}$ and 224.6^{0}
C. $\quad 112.4^{0}$ and 72.0^{0}
D. $\quad 39.6^{\circ}$ and 212.4^{0}

Use the following information to answer question 48 and 49.

No of defective per box	4	5	6	7	8	9
No . of boxes	2	7	17	10	8	6

Fifty boxes each of 50balls were inspected for the number which were defective. The following was the result
48. The mean and the median of the distribution are respectively
A. $\quad 6.7,6$
B. $\quad 6.7,6.5$
C. $\quad 6,6.7$
D. $6.5,6.7$
49. Find the percentage of boxes containing at least 5 defective bolts each.
A. 96
B. 94
C. 92
D. 90
50. A crate of soft drinks contains 10bottles of Coca-cola, 8 of Fanta and 6 of Sprite. If one bottle s selected at random, what is the probability that it is NOT a Coca cola bottle?
A. $5 / 12$
B. $1 / 3$
C. $3 / 4$
D. $7 / 1$

1. Find n if $34_{n}=10011_{2}$
A. 5
B. 6
C. 7
D. 8
2. The radius of a circle is given as 5 cm subject to an error of 0.1 cm . what is the percentage error in the area of the circle.
A. $\quad 1 / 25$
B. $\quad 1 / 4$
C. 4
D. 25
3. \quad Evaluate $\log _{b} a^{n}$ if $b=1 / a^{n}$
A. $\quad n^{2}$
B. n
C. $1 / n$
D. $1 / \mathrm{n}$
4. What is the value of x satisfying the equation $4^{2 y} / 4^{3 x}=$ 2 ?
A. $\quad-2$
B. $-1 / 2$
C. $1 / 2$
D. 2
5. \quad Simplify $\frac{\left\{\left(1.25 \times 10^{4}\right) \times\left(2.0 \times 10^{-1}\right)\right.}{\left(6.25 \times 10^{5}\right.}$
A. $\quad 4.0 \times 10^{-3} \mathrm{~B} . \quad 5.0 \times 10^{-2}$
C. $\quad 2.0 \times 10^{-1} \mathrm{D} . \quad 5.0 \times 10^{3}$
6. Simplify $5 \sqrt{ } 18-3 \sqrt{ } 72+4 \sqrt{ } 50$
A. $\quad 17 \sqrt{ } 4$
B. $\quad 4 \sqrt{ } 17$
C. $\quad 17 \sqrt{ } 2$
D. $12 \sqrt{4}$
7. If $x=3-\sqrt{ } 3$, find $x^{2}+36 / x^{2}$
$\begin{array}{llll}\text { A. } & 9 & \text { B. } & 18 \\ \text { C. } & 24 & \text { D. } & 27\end{array}$
8. If $x=\{$ all prime factors of 44$\}$ and
$y=\{$ all prime factors of 60$\}$, the elements of $x \cap y$ and $x C ̧ y$ respectively are.
A. $\quad\{2,4,3,5,11\}$ and $\{4\}$
B. $\{4,3,5,11\}$ and $\{3,4\}$
C. $\{2,5,11\}$ and $\{2\}$
D. $\quad\{2,3,5,11\}$ and $\{2\}$
9. If $U=\{0,2,3,6,7,8,9,10\}$ is the universal set, $E=\{0,4,6,8$, and $F=\left\{x: x^{2}=2^{6},\right\}, x$ is odd $\}$. Find (EGF)' where means the complement of a set
A.
$\{0\}$
B. U
C. C
D. f
10. Make 1 the subject of the formula
$s=u t+1 / 2 a t^{2}$
A. $1 / a\left[u \pm \sqrt{ }\left(u^{2}-2 a s\right)\right]$
B. $1 / a\left[-u \pm \sqrt{ }\left(u^{2}-2 a s\right]\right.$
C. $1 / \mathrm{a}\left[\mathrm{u} \pm \sqrt{ }\left(\mathrm{u}^{2}+2 \mathrm{as}\right)\right.$
D. $1 / \mathrm{a}\left[-u \pm \sqrt{ }\left(\mathrm{u}^{2}+2 \mathrm{as}\right)\right]$
11. Factorize $9 p^{2}-q^{2}+6 p r-9 r^{2}$
A. $\quad(3 p-3 q+r)(3 p-q-9 r)$
B. $\quad(6 p-3 q+3 r)(3 p-q-4 r)$
C. $\quad(3 p-q+3 r)(3 p+q-3 r)$
D. $(3 p-q+3 r)(3 p-q-3 r)$
12. Solve the equation $y-11 \sqrt{y}+24=0$
A. 8,3
B.
64,9
C. $\quad 6,4$
D. $9,-8$
13. A man invested a sum of \#280.00 partly at 59% and partly at 4%. If the total interest is \#12.80 per annum, find the amount invested at 5%.
A. $\# 14.00$
B. $\quad \# 120.00$
C. $\# 140.00$
D. $\# 160.00$
14. If $x+1$ is a factor of $x^{3}+3 x^{2}+k x+4$, find the value of k
A. 6
B. -6
C. 8
D. -8
15. Resolve $\left(3 / x^{2}+x-2\right)$ into partial fractions
A. 1
$\frac{1}{x+2}$
B. $\frac{1}{x+2} \frac{1}{x-1}$
C. $\frac{1}{x+1} \frac{-1}{x-2} \quad$ D. $\frac{1}{x-2}+\frac{1}{x+1}$
16. Find all values of x satisfying the inequality $-11 \leq 43 x \leq 28$
A. $\quad-5 \leq \mathrm{x} \leq 18$
B. $\quad 5 \leq x \leq 8$
C. $-8 \leq x \leq 5$
D. $-5<x \leq 8$
17.

The sketch above is the curve of $y=a x^{2}+b x+c$. find a, b, and c respectively
A. $1,0,-4$
B. $\quad-2,2,-4$
C. $0,1,-4$
D. $2,-2,-4$
18. Find the sum of the infinity of the following series. $3+$ $2+4 / 3+8 / 9+16 / 27+$..
A. $\quad 1270$
B. 190
C. 18
D. $\quad 9$
19. What is the nth term of the sequence $2,6,12,20, \ldots$?
A. $4 n-2$
B. $\quad 2(3 n-1)$
C. $n^{2}+n$
D. $n^{2}+3 n+2$
20. For an arithmetic sequence, the first term is 2 and the common difference is 3 . find the sum of the fist 11 terms.
A. 157
B. 187
C. 197
D. 200
21. If the binary operation * is defined by $m * n=m n+m+n$ for any real number m and n, find the identity element under this operation.
A. $\quad \mathrm{e}=1$
B. $\quad e=-1$
C. $\quad \mathrm{e}=-2$
D. $\quad e=0$

Use the matrices below to answer questions 22 and 23.

22. When P^{T} is the transpose of P , calculate $\left[\mathrm{P}^{\mathrm{T}}\right]$ when $\mathrm{x}=0$, $\mathrm{y}=1$ and $\mathrm{z}=2$
A. 48
B. 24
C. $\quad-24$
D. $\quad-48$
23. PQ is equivalent to
$\mathrm{A} \quad \mathrm{PP}^{\mathrm{T}}$
B. $\quad \mathrm{PP}^{-\mathrm{T}}$
C. $\quad \mathrm{QP}$
D. $\quad \mathrm{PP}$
24.

In the figure above, $\mathrm{TSP}=105^{\circ}$ and $\mathrm{PRQ}=20^{\circ}$, find PQR
A. $\quad 130^{\circ}$
B. $\quad 120^{\circ}$
C. $\quad 75^{0}$
D. $\quad 30^{\circ}$
25. If the angles of a quadrilateral are $(p+10)^{0},(p+20)^{0}$ and $4 p^{0}$, find p
A. 63
B. $\quad 40$
C. 36
D. 28
26.

In the figure above, PQR is a semicircle while PQ and QR are chords. QS is the perpendicular from Q to the diameter PR. What is the expression for QS?
A. $\quad \mathrm{QS}=\mathrm{PS} . \mathrm{SR}$
B. $\quad \mathrm{QS}=\sqrt{ }(\mathrm{PS} . \mathrm{SR})$
C. $\quad \mathrm{QS}=\sqrt{ } 2 \sqrt{ }(\mathrm{PS} . \mathrm{SR})$
D. $\quad \mathrm{QS}=1 / \sqrt{2} \sqrt{ }(\mathrm{PS} . S R)$
27. Determine the distance on the earth's surface between two towns P(Lat. $60^{\circ} \mathrm{N}$, Long. $\left.20^{\circ} \mathrm{E}\right)$ and $\mathrm{Q}\left(\right.$ Lat. $60^{\circ} \mathrm{N}$, Long $25^{\circ} \mathrm{W}$)
A. $\quad 800 \mathrm{p} / 9 \mathrm{~km}$
B. 800 Ö $3 \mathrm{p} / 9 \mathrm{~km}$
C. 800 pkm
D. $8000 ̈ 3 \mathrm{pkm}$
28.

If in the diagram above, FG is parallel to KM , find the value of x
A. $\quad 75^{0}$
B. $\quad 95^{\circ}$
C. $\quad 105^{0}$
D. $\quad 125^{\circ}$
29. X is a point due east of point Y on a coast Z is another point on the coast but 6.3 km due south of Y . if the distance ZX is 12 km , calculate the bearing of Z from X
A. $\quad 240^{\circ}$
B. 210°
C. $\quad 150^{\circ} 8$
D. $\quad 60^{\circ}$
30.

The above diagram is a circle with centre O. find the area of the shaded portion.
A. $\quad 9 \pi \mathrm{~cm}^{2}$
B. $\quad 9(\pi-2) \mathrm{cm}^{2}$
C. $\quad 18 \pi \mathrm{~cm}^{2}$
3D. $36 \pi \mathrm{~cm}^{2}$
31. The locus of a point which is equidistant from two given fixed points is the
A. perpendicular bisector of the straight line joining them
B. parallel line to the straight line joining them
C. transverse to the straight line joining them
D. angle bisector of 90° which the straight line joining them makes with the horizontal
32. What is the perpendicular distance of a point (2,3)from the line $2 x-4 y+3=0$
A. $\quad \sqrt{5} / 2$
B. $-\sqrt{ } 5 / 20$
C. $\quad-5 / \sqrt{ } 13$
D. 0
33. Find the equation of the line through $(5,7)$ parallel to the line $7 x+5 y=12$
A. $\quad 5 x+7 y=120$
B. $\quad 7 x+5 y=70$
C. $x+y=7$
D. $15 x+17 y=90$
34. Given that q is an acute angle and $\sin \mathrm{q}=\mathrm{m} / \mathrm{n}$, find $\cot \mathrm{q}$.
A. $\sqrt{\frac{\mathrm{n}^{2}-\mathrm{m}^{2}}{\mathrm{~m}}}$
B. $\sqrt{\frac{(\mathrm{n}+\mathrm{m})}{\mathrm{m}}(\mathrm{n}-\mathrm{m})}$
C. $\frac{m}{\sqrt{n 2-m 2}}$
D. $\sqrt{\frac{n}{n 2-m 2}}$
35.

In the figure above, if XZ is 10 cm , calculate RY in cm
A. $\quad 10$
B. $\quad 10(1-1 / \mathrm{O} 3)$
C. $\quad 10(1-\mathrm{O} 3)$
36. Evaluate $\lim _{x-->2} \frac{(x-2)\left(x^{2}+3 x-2\right)}{\left(x^{2}-4\right)}$
A. 0
B. 2
C. 3
D. 4
37. If $y=x$, find $d^{2} y / d x^{2}$
A. $\quad 2 \cos x-x \sin x$
B. $\quad \sin x+x \cos x$
C. $\quad \sin x-x \cos x$
D. $\quad x \sin x-2 \cos x$
38. Ice forms on a refrigerator ice-box at the rate of (4$0.6 \mathrm{t}) \mathrm{g}$ per minute after t minute. If initially there are 2 g of ice in the box, find the mass of ice formed in 5 minutes.
A. $\quad 19.5$
B. $\quad 17.0$
C. 14.5
D. 12.5
39. Obtain a maximum value of the function

$$
f(x)=x^{3}-12 x+11
$$

A. $\quad-5 \quad$ B. $\quad-2$
C. 5
D. 27
40. A student blows a ballon and its volume increases at a rate of $\mathrm{p}\left(20-\mathrm{t}^{2}\right) \mathrm{ccm}^{3} \mathrm{~s}^{-1}$ after t seconds. If the initial volume of $0 \mathrm{~cm}^{3}$, find the volume of the balloon after 2 seconds.
A. $\quad 37.00 \pi$
B. $\quad 37.33 \pi$
C. $\quad 40.00 \pi$
D. $\quad 42.67 \pi$
41. Evaluate the integral ${ }^{\pi / 4} \pi / 12 \cos 2 \mathrm{x} \mathrm{dx}$
A. $-1 / 2$
B. $\quad-1$
C. $1 / 2$
D. 1
42. A storekeeper checked his stock of five commodities and arrived at the following statistics.

Commodity	Quantity
F	215
G	113
H	108
K	216
M	68

What angle will commodity H represent on a pie chart?
A. $\quad 216^{\circ}$
B. 108
C. $\quad 68^{\circ}$
D. $\quad 54^{0}$
43.

x	2	4	6	8
f	4	y	6	5

If the mean of the above frequency distribution is 5.2, find y
A. $\quad 6.0$
B. $\quad 5.2$
C. $\quad 5.0$
D. 4.0
44.

No . of children	0	1	2	3	4	5	6
No . of families	7	11	6	7	7	5	3

Find the mode and median respectively of the distribution above
A. $\quad 2,1$
B. $\quad 1,2$
C. 1,5
D. $\quad 5,2$
45. If the scores of 3students in a test are 5,6 and 7 find the standard deviation of their scores
A. $\quad 2 / 3$
B. $\quad 3 / 2 \sqrt{3}$
C. $\sqrt{ } 2 / 3$
D. $\sqrt{3} / 2$
46. Sample variance can be defined as
$S_{2}=1 / n \quad{ }_{n=1}(x 1-x)^{2}$ and
$S_{2}=\frac{1}{(n-1)}{ }^{n} \sum_{n=11}^{n=1}\left(x_{1}-x\right)$
Where n is the number of sample observations. There is no difference practically between the above definitions when
A. $\quad \mathrm{n}=35$
B. $\quad \mathrm{n}>35$
C. $n<35$
D. $n=5$
47. Two perfect dice are throw together. Determine the probability of obtaining a total score of 8
A. $\quad 1 / 12$
B. $5 / 36$
C. $1 / 8$
D. $7 / 36$
48. The probability of an event P is $3 / 4$ while that of another Q is $1 / 6$. if the probability of both P and Q is $1 / 12$, what is the probability of either P or Q ?
A. $1 / 96$
B. $\quad 1 / 8$
C. $5 / 6$
D. $11 / 12$
49. Five people are to be arranged in a row for a group photograph. How many arrangements are there if a married couple in the group insist on sitting next to each other?
A. 48
B. 24
C. 20
D. 10
50. A student has 5 courses to take from Mathematics and Physics. There are 4 courses in Mathematics and 3 in Physics which he can choose from at will. In how many ways can he choose his courses so that he takes exactly two courses in Physics?
A. $\quad 11$
B. 12
C. 10
D. 7

1. Change 71_{10} to base 8
A. $\quad 107_{8}$
B $\quad 106_{8}$
C. $\quad 71_{8}$
D. $\quad 178$
2. Evaluate $3524 / 0.05$ correct to 3 significant figures.
A. 705
B. 70000
C. 70480
D. 70500
3. If $9^{(x-1 / 2)}=3^{x 2}$, find the value of x.
A. $\quad 1 / 2$
B. $\quad 1$
C. 2
D. 3
4. \quad Solve for y in the equation $10 \mathrm{y}, \mathrm{X} 5^{(2 \mathrm{y}-2)} \times 4^{(\mathrm{y}-1)}=1$
A. $\quad 3 / 4$
B. $\quad 2 / 3$
C. 1
D. $\quad 5 / 4$
5. Simplify $1 / 3-2-1 / 3+2$
A. 4
B. $\quad 2 / 3$
C. 0
D. -4
6. If $2 \log _{3} y+\log _{3}{ }^{x 2}=4$, then y is
A. $\quad\left(4-\log _{3}{ }^{x 2}\right) / 2$
B. $\quad 4 / \log _{3}{ }^{x 2}$
C. $\quad 2 / x$
D. $\quad \pm{ }^{9} / \mathrm{x}$
7. Solve without using tables

$$
\log _{5}(62.5)-\log _{5}(1 / 2)
$$

A. 3
B. 4
C. 5
D. 8
8. If \#225.00 yields \#27.00 in x years simple interest at the rate of 4% per annum, find x
A. 3
B. 4
C. 12
D. 27
9.

The shaded portion in the venn diagram above is
A. $\mathrm{XÇZ}$
B.
X^{c} ÇYÇZ
C. $\mathrm{XÇY}{ }^{\mathrm{c}} \mathrm{Ç} \mathrm{Z}$
D.
XÇYÇZ ${ }^{\text {c }}$
10. If $\sqrt{x^{2}}+9=x+1$, solve for x
A. 5
B. 4
C. 3
D. 1
11. Make x the subject of the relation
$1+a x / 1-a x=p / q$
A. $p+q / a(p-q)$
B.
C. $p-q / a p q$
D.
$p-q / a(p+q)$
$\mathrm{pq} / \mathrm{a}(\mathrm{p}-\mathrm{q})$
12. Which of the following is a factor of

$$
15+7 x-2 x^{2} ?
$$

A. $x-3$
B. $x+3$
C. $x-5$
D. $x+5$
13. Evaluate

$$
(x+1 / x+1)^{2}-(x-1 / x-1)^{2}
$$

A. $\quad 4 x^{2}$
B.
$(2 / x+2)^{2}$
C. 4
D.
$4(1+x)$
14. Solve the following simultaneous equations for x .

$$
\begin{aligned}
& x^{2}+y-5=0 \\
& y-7 x+3=0
\end{aligned}
$$

A. $\quad-2,4$
B. $\quad 2,4$
C. $\quad-1,8$
D. $1,-8$
15. Solve the following equation
$(3 x-2)(5 x-4)=(3 x-2)^{2}$
A. $\quad-3 / 2,1$
B.
D. $\quad 2 / 3,4 / 5$
16.

The figure above represents the graphs of $y=x(2-x)$ and $y=(x-1)(x-3)$. What are the x-coordinates of p, q and r respectively?
A. $\quad 1,3,2$
B. $\quad 0,0,0$
C. $0,2,3$
D.
1,2,3
17. If the function f is defined by
$f(x+2)=2 x^{2}+7 x-5$, find $f(-1)$
A. $\quad-10$
B. $\quad-8$
C. 4
D. 10
18. Divide the expression
A. $\quad-x^{3}+7 x^{2}-x-7$
C. $\quad X-7$
$x^{3}+7 x^{2}-x-7$ by $-1+x^{2}$
B.
$-x^{3}-7 x+7$
D.
$\mathrm{X}+7$
19. Simplify
$1 / p-1 / q-p / q-q / p$
A. $1 / \mathrm{p}-\mathrm{q}$
B.
$-1 / p+q$
C. $1 / \mathrm{pq}$
D.
$1 / p q(p-q)$
20. Solve the inequality
$y 2-3 y>18$
$\begin{array}{llll}\text { A. }-2<y<6 & \text { B. } & y<-3 \text { or } y>6 \\ \text { C. } y>-3 \text { or } y>6 & \text { D. } & y<-3 \text { or } y<6\end{array}$

21 If x is negative, what is the range of values of x within which

$$
x+1 / 3>1 / x+3
$$

A. $\quad 3<x<4$
B. $\quad-4<x<-3$
C. $\quad-2<x<-1$
D.
$-3<x<0$

A man's initial salary is \#540.00 a month and increases after each period of six months by \#36.00 a month. Find his salary in the eighth month of the third year.
A. $\quad \# 828.00$
B. \#756.00
C. \#720.00
D. \#684.00
23. If $\mathrm{k}+1,2 \mathrm{k}-1,3 \mathrm{k}+1$ are three consecutive terms of a geometric progression, find the possible values of the common ratio.
A. 0,8
B $\quad-1,5 / 3$
C. 2,3
D. $\quad 1,-1$
24. A binary operation * is defined on a set of real numbers by $x * y=x y$ for all real values of x and y, if $x * 2=x$, find the possible values of x
A. 0,1
B. 1,2
C. 2, 2
D. 0,2

PQRST is a regular pentagon and PQVU is a rectangle with U and V lying on TS and SR respectively as shown in the diagram above. Calculate TUV
A. $\quad 18^{0}$
B. $\quad 54^{0}$
C. 90°
D. 108^{0}
26. A regular polygon has 150° as the size of each interior angle. How many sides has the polygon?
A. 12
B. 10
C. 9
D. 8
27. Calculate the length, in cm , of the arc of the circle of diameter 8 cm which subtends an angle of $22^{1 / 2}{ }^{0}$
A. $\quad 2 \pi$
B. π
C. $\quad 2 / 3 \pi$
D. $\pi / 2$
28.

In the diagram above, PQRS is a circle with O as centre and PQ//RT if RTS $=32^{\circ}$, find PSQ
A. $\quad 32^{0}$
B. $\quad 45^{\circ}$
C. $\quad 58^{0}$
D. 90°

In the diagram above. O is the centre of the circle and POQ a diameter. If $\mathrm{POR}=96^{\circ}$, find the value of ORQ.
A.
84^{0}
B. $\quad 48^{0}$
C. 45^{0}
D. 42^{0}
30.

In the diagram above, $\widehat{\mathrm{Q}} / / \mathrm{ST} ; \mathrm{PQR} .=34^{\circ}, \mathrm{QRS}=$ 73° and RS = RT. Find SRT
A. $\quad 68^{\circ}$
B. $\quad 102^{0}$
C. $\quad 107^{0}$
D. 141^{0}
31.

In the figure above, PT is a tangent to the circle at u and QU//RS. If TUR=35 ${ }^{\circ}$ and $\operatorname{SRU}=50 .{ }^{\circ}$ find x.
A. $\quad 95^{\circ}$
B. $\quad 85^{0}$
C. 50^{0}
D. $\quad 35^{\circ}$
32.

In the diagram above, $\mathrm{QPS}=\mathrm{SPR}, \mathrm{PR}=9 \mathrm{~cm}, \mathrm{PQ}=$ 4 cm and $\mathrm{QS}=3 \mathrm{~cm}$. Find SR.
A. $\quad 6^{3} /{ }_{4}$
B. $\quad 3^{3} / 8$
C. $\quad 4{ }^{3} / 8$
D. $\quad 2{ }^{2} / 3$
33. The three sides of an isosceles triangle are of lengths $x+3,2 x+3,2 x-3$ respectively. Calculate x.
A. $\quad 0$
B. $\quad 1$
C. 3
D. 6
34.

In the figure above, the line segment ST is tangent to the two circles at S and $\mathrm{T} . \mathrm{O}$ and Q are the centres of the circles with $\mathrm{OS}=5 \mathrm{~cm}, \mathrm{QT}=2 \mathrm{~cm}$ and $\mathrm{OQ}=$ 14 cm . Find ST.
A. 7"3
B.
12 cm
C. $\quad=87 \mathrm{~cm}$
D. $\quad 7 \mathrm{~cm}$
35.

In the figure above, the area of the square PQRS is $100 \mathrm{~cm}^{2}$. If the ratio of the area of the square TUYS to the area of the square $\mathbf{X Q V U}$ is $1: 16$, find $Y R$
A. 6 cm
B.
7 cm
C. $\quad 8 \mathrm{~cm}$
D. $\quad 9 \mathrm{~cm}$
36. Find the radius of a sphere whose surface area is $154 \mathrm{~cm}^{2} \quad(\pi=22 / 7)$
A. $\quad 7.00 \mathrm{~cm}$
B. $\quad 3.50 \mathrm{~cm}$
C. $\quad 3.00 \mathrm{~cm}$
D. $\quad 1.75 \mathrm{~cm}$
37. Find the area of the sector of a circle with radius 3 m , if the angle of the sector is 60°
A. $\quad 4.0 \mathrm{~m}^{2}$
B. $\quad 4.1 \mathrm{~m}^{2}$
C. $\quad 4.7 \mathrm{~m}^{2}$
D. $\quad 5.0 \mathrm{~m}^{2}$
38. The angle between latitudes $30^{\circ} \mathrm{S}$ and $13^{\circ} \mathrm{N}$ is
A. $\quad 17^{0}$
B. $\quad 33^{\circ}$
C. $\quad 43^{0}$
D. $\quad 53^{0}$
39. If $\sin \theta=\cos 0$, find 0 between 0° and 360°.
A. $\quad 45^{0}, 225^{0}$
B. $\quad 135^{0}, 315^{0}$
C. $\quad 45^{0}, 315^{0}$
D. $\quad 135^{0}, 225^{\circ}$
40.

From the figure above, calculate TH in centimeters.
A. $\quad 5 /(\sqrt{ } 3+1)$
B. $\quad 5 / \sqrt{3}-1$
C. $\quad 5 / \sqrt{ } 3$
D. $\sqrt{ } 3 / 5$
41. If two angles of a triangle are 30° each and the longest side is 10 cm , calculate the length of each of the other sides.
A. $\quad 5 \mathrm{~cm}$
B. 4 cm
C. $\quad 3 \sqrt{ } 3 \mathrm{~cm}$
D. $10 \sqrt{ } 3 / 5 \mathrm{~cm}$

Quantities in the proportions $1,4,6,7$ are to be represented in a pie chart. Calculate the angle of the sector with proportion 7
A. $\quad 20^{0}$
B. $\quad 80^{0}$
C. $\quad 120^{\circ}$
D. 140°
43.

The bar chart above shows the distribution of marks in a class test. How many students took the test?
A. 15
B.
20
C. 25
D.
50
44. The following marks were obtained by twenty students in an examination
53307084594390207848
44608173503767686452
Find the number of students who scored at least 50marks
A. 6
B. 10
C. 13
D.
14
45.

Weight (g)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of coconuts	10	27	19	6	2

Estimate the mode of the frequency distribution above.
A. $\quad 13.2 \mathrm{~g}$
B. $\quad 15.0 \mathrm{~g}$
C. $\quad 16.8 \mathrm{~g}$
D. $\quad 17.5 \mathrm{~g}$
46. The mean of the ages of ten secondary school pupils is 16 but when the age of their teacher is added to it, the mean becomes 19 . Find the age of the teacher.
A. 27
B. 35
C. 38
D. 49

47

Class	Frequency
$1-5$	2
$6-10$	4
$11-15$	5
$16-20$	2
$21-25$	3
$26-30$	2
$31-35$	1
$36-40$	1

Find the median of the observations in the table
above.
A. $\quad 11.5$
B. $\quad 12.5$
C. $\quad 14.0$
D. $\quad 14.5$
48. A number is selected at random between 20 and 30 both numbers inclusive. Find the probability that the number is a prime
A. $\quad 2 / 11$
B. $\quad 5 / 11$
C. $\quad 6 / 11$
D. $\quad 8 / 11$
49. Calculate the standard deviation of the following data.
$7,8,9,10,11,12,13$.
A. 2
B. 4
C. 10
D. 11
50. The chances of three independent event $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ occurring are $1 / 2,2 / 3,1 / 4$ respectively. What are the chances of y and z only occurring?
A. $\quad 1 / 8$
B. $\quad 1 / 24$
C. $\quad 1 / 12$
D. $\quad 1 / 4$

Mathematics 1994

1. Evaluate
A. $\quad 28 / 39$
$1 / 3 \div[5 / 7(9 / 10-1+3 / 4)]$
C. $\quad{ }^{39} /{ }_{28}^{39}$
B.
D. $\quad{ }^{84} /{ }_{13}$
2. \quad Evaluate ($0.36 \times 5.4 \times 0.63$) ($4.2 \times 9.0 \times 2.4$) correct to 2 significant figures
A. 0.013
B. 0.014
C. 0.13
D. 0.14
3. Evaluate

$$
\underset{\left.\log _{3} 18-\log _{3} 2\right)}{(0.04)}
$$

A. 1
B. -1
C. $\quad 2 / 3$
D. $-2 / 3$
4. Without using tables, solve the equation

$$
8 x^{-2}=2 / 25
$$

$\begin{array}{lll}\text { A. } & 4 & \text { B. } \\ \text { C. } & 6\end{array}$

5
Simply $\quad \sqrt{ } 48-9_{\sqrt{3}}+\sqrt{ } 75$
A. $\quad 5 \sqrt{ } 3$
B. $\quad 6 \sqrt{ } 3$
C. $\quad 8 \sqrt{ } 3$
D. $\quad 18 \sqrt{ } 3$
6. Given that " $2=1.414$, find without using tables, the value of $1 /{ }^{1}$
A. $\quad 0.141$
B. 0.301
C. 0.667
D. 0.707
7. In a science class of 42 students, each offers at least one of Mathematics and Physics. If 22 students offer Physics and 28 students offer Mathematics, find how many students offer Physics only?
A. 6
B. 8
C. 12
D. 14
8. Given that for sets A and B , in a universal set $\mathrm{E}, \mathrm{A} \subseteq$ B then
$A \cap(A \cap B)^{\prime}$ is
A. A
B. \square
C. B
D. $\quad \sum$
9. \quad Solve for x if $25^{x}+3\left(5^{x}\right)=4$
A. $\quad 1$ or -4
B. 0
C. 1
D. -4 or 0
10. Simplify
$\frac{\left[(2 m-u)^{2}-(m-2 u)^{2}\right]}{\left(5 m^{2}-5 u^{2}\right)}$
A. $\quad 3 / 4$
B. $\quad 2 / 5$
C. $\quad 2 \mathrm{~m}-\mathrm{u} / 5 \mathrm{~m}+\mathrm{u}$
D. $\quad m-2 u / m+5 u$
11. Factorize

$a^{2} x-b^{2} y-b^{2} x+a^{2} y$			
A.	$(a-b)(x+y)$	B.	$(y-x)(a-b)(a+b)$
C.	$(x-y)(a-b)(a+b)$	D.	$(x+y)(a-b)(a+b)$

12. Find the values of p and q such that $(x-1)$ and (x 3) are factors of $p x^{3}+q x^{2}+11 x-6$
A. $-1,-6$
B. $1,-6$
C. 1,6
D. $6,-1$
13.

The equation of the graph above is
A. $\quad y=(x-3)^{3}$
B. $y=(x+3)^{3}$
C. $y=x^{3}-27$
D. $y=-x^{3}+27$
14. If $\mathrm{a}=1, \mathrm{~b}=3$, solve for x in the equation

$$
\mathrm{a} / \mathrm{a}-\mathrm{x}=\mathrm{b} / \mathrm{x}-\mathrm{b}
$$

A. $\quad 4 / 3$
B. $\quad 2 / 3$
C. $\quad 3 / 2$
D. $3 / 4$
15. Solve for r in the following equation

		$1 /(r-1)+2 /(r+1)=3 / r$	
A.	3	B.	4
C.	5	D.	6

16. Find P if $x-3 /(1-x)(x+2)=P /(1-x)+Q /(x+2)$
A. $\quad-2 / 3$
B. $\quad-5 / 3$
C. $5 / 3$
D. $\quad 2 / 3$
17. Find the range of values of x for which $1 / x>2$ is true
A. $\quad \mathrm{x}<1 / 2$
B. $\quad \mathrm{x}<0$ or $\mathrm{x}>1 / 2$
C. $0<x<1 / 2$
D. $\quad 1<x<2$
18.

Find the inequality which represents the shaded portion in the diagram
A. $\quad 2 \mathrm{x}-\mathrm{y}-2 £ 0$
B. $\quad 2 \mathrm{x}-\mathrm{y}-2^{3} 0$
C. $\quad 2 \mathrm{x}-\mathrm{y}-2<0$
D. $\quad 2 \mathrm{x}-\mathrm{y}-2>0$
19. If the 6th term of an arithmetic progression is 11 and the first term is 1 , find the common difference.
A. $\quad 12 / 5$
B. $\quad 5 / 3$
C. -2
D. 2
20. Find the value of r if $\log _{10} r+\log _{10} r^{2}+\log _{10} r^{4}+\log _{10} r^{8}$ $+\log _{10}{ }^{16}+\log _{10}{ }^{32}=63$
A. $\quad 10^{-8}$
B. $\quad 10^{0}$
C. 10
D. $\quad 10^{2}$
21. Find the nth term of the sequence

$$
3,6,10,15,21, \ldots \ldots
$$

A. $\quad n(n-1 / 2)$
B
$\mathrm{n}(\mathrm{n}+1 / 2)$
C. $\quad(\mathrm{n}+1)(\mathrm{n}+2) / 2$
D. $n(2 n+1)$
22. A binary operation * is defined on the set of all positive integers by $a * b=a b$ for all positive integers a, b. which of the following properties does NOT hold?
A. Closure
B. Associativity.
C. Identity.
D. Inverse.
23.

$\otimes \bmod 10$	2	4	6	8
2	4	8	2	6
4	8	6	4	2
6	2	4	6	8
8	6	2	8	4

The multiplication table above has modulo 10 on the set $S=\{2,4,6,8\}$. Find the inverse of 2
A. 2
B. 4
C. 6
D. 8
24. Solve for x and y

$$
\left|\begin{array}{ll}
1 & 1 \\
3 & \mathrm{y}
\end{array}\right| \quad\left|\begin{array}{l}
\mathrm{x} \\
1
\end{array}\right|=\frac{4}{1}
$$

A. $\quad x=-3, y=3$
B. $\quad x=8, y=3$
C. $x=3, y=-8$
D. $x=8, y=-3$
25. The determinant of the matrix

	$(1$	2	$3)$	
	$(4$	5	$6)$	is
	$(2$	0	$-1)$	
A.	-67		B.	-57
C.	-3		D.	3

26.

The equation of the line in the graph above is
A. $\quad 3 y=4 x+12$
B. $\quad 3 y=3 x+12$
C. $\quad 3 y=-4 x+12$
D. $\quad 3 y=-4 x+9$
27.

In the diagram above, O is the centre of the circle. If SOQ is a diameter and $\angle \mathrm{PRS}$ is 38°, what is the value of $\angle \mathrm{PSQ}$?
A. 148^{0}
B. $\quad 104^{0}$
C. $\quad 80^{\circ}$
D. $\quad 52^{0}$
28. If three angles of a quadrilateral are $(3 y-x-z)^{0}, 3 x^{0}$, $(2 z-2 y-x)^{0}$, find the fourth angle in terms of x, y, and Z.
A. $\quad(360-x-y-z)^{0}$
B. $\quad(360+x+y-z)^{0}$
C.
$(180-x+y+z)^{0} D$.
$(180+x+y+z)^{0}$
29. An open rectangular box is made of wood 2 cm thick. If the internal dimensions of the box are 50 cm long, 36 cm wide and 20 cm deep, the volume of wood in the box is
A. $\quad 11520 \mathrm{~cm}^{3}$
B. $36000 \mathrm{~cm}^{3}$
C. $38200 \mathrm{~cm}^{3}$
D. $47520 \mathrm{~cm}^{3}$
30. Calculate the perimeter in cm , of a sector of a circle of radius 8 cm and angle 45°
A. $\quad 2 \pi$
B. $8+2 \pi$
C. $\quad 16+2 \pi$
D. $16+16 \pi$
31.

In the diagram above, PTS is a tangent to the circle TQR at T. calculate < RTS.
A. $\quad 120^{\circ}$
B. $\quad 70^{\circ}$
C. $\quad 60^{\circ}$
D. 40°
32.

In the diagram above, find h.
A. $\quad 12 / 7 \mathrm{~cm}$
B. $\quad 12 / 7 \mathrm{~V} 6 \mathrm{~cm}$
C. $\quad{ }^{7} /{ }_{12} \mathrm{~cm}$
D. $\quad 1 / 2 \mathrm{~V} 51 \mathrm{~cm}$
33.

In the frustum of a cone shown above, the top diameter is twice the bottom diameter. If the height of the frustum is h centimeters, find the height of the cone.
A. $\quad 2 \mathrm{~h}$
B. $\quad 2 \pi \mathrm{~h}$
C. $\quad \pi h$
D. $\quad \pi \mathrm{h} / 2$
34. What is the locus of a point P which moves on one side of a straight line XY, so that the angle XPY is always equal to 90°
A. The perpendicular
B. Aright-angled triangle. bisector of XYX
C. A circle
D. A semi-circle.
35. If $M(4, q)$ is the mid-point of the line joining $L(p,-2)$ and $N(q, p)$, find the values of p and q.
A. $\quad p=2, q=4$
B. $\quad \mathrm{p}=3, \mathrm{q}=1$
C. $\quad \mathrm{p}=5, \mathrm{q}=3$
D. $\quad p=6, q=2$
36.

37. The angle of depression of a boat from the top of a cliff 10 m high is 30°. how far is the boat from the foot of the cliff?
A. $\quad 5 \sqrt{3} / 3 \mathrm{~m}$
B. $\quad 5 \sqrt{ } 3 \mathrm{~m}$
C. $\quad 10 \sqrt{3} \mathrm{~m}$
D. $\quad 10 \sqrt{3} / 3 \mathrm{~m}$
38. What is the value of $\sin \left(-690^{\circ}\right)$?
A. $\quad \sqrt{3} / 2$
B. $\quad-\sqrt{ } 3 / 2$
C. $-1 / 2$
D. $1 / 2$
39. If $y=3 t^{3}+2 t^{2}-7 t+3$, find ${ }^{d y} /$ dt at $t=-1$
A. $\quad-1$
B. $\quad 1$
C. $\quad-2$
D. 2
40. Find the point (x, y) on the Euclidean plane where the curve $y=2 x^{2}-2 x+3$ has 2 as gradient.
A. $(1,3)$
B. $\quad(2,7)$
C. $(0,3)$
D. $(3,15)$
41. Integrate $(1-x) / x^{3}$ with respect to x.
A. $\quad\left(x-x^{2}\right) /\left(x^{4}+k\right)$
B. $\quad 4 / x^{4}-3 / x^{3}+k$
C. $\quad 1 / x-1 / 2 x^{2}+k$
D. $\quad 1 / 3 x^{3}-1 / 2 x+k$
42. Evaluate $\int_{-1}^{1}(2 \mathrm{x}+1)^{2} \mathrm{dx}$
A. $\quad 3 / 3$
B. 4
C. $\quad 4^{1 / 3}$
D. $\quad 4^{2} / 3$
43.

The grades A1, A2, A3, C4 and F earned by students in a particular course are shown in the pie chart above. What percentage of the students obtained a C4 grade?
A. $\quad 52.0$
B. 43.2
C. $\quad 40.0$
D. $\quad 12.0$
44.

x	1	2	3	4	5
f	2	1	2	1	2

The table above shows the frequency distribution of a data. If the mean is $43 / 14$, find y.
A. $\quad 1$
B. 2
C. 3
D. 4
45. The mean of twelve positive numbers is 3 . when another number is added, the mean becomes 5 . find the thirteenth number.
A. 29
B. 26
C. 25
D. 24
46. Find the mean deviation of the set of numbers $4,5,9$
A 0
B. 2
C. 5
D. 6
47.

Class interva	$1-5$	$6-10$	$11-15$	$16-20$	$21-25$
Frequency	6	15	20	7	2

Estimate the median of the frequency distribution above.
A. $10^{1} / 2$
B. $11 \frac{1}{2}$
C. $\quad 12^{1 / 2}$
D. 13
48.

x	1	2	3	4	5
f	$y+2$	$y-1$	$2 y+3$	$y+4$	$3 y-4$

Find the variance of the frequency distribution above
A.
$\begin{array}{ll}\text { B. } \quad 9 / 4 \\ \text { D. } & 3\end{array}$
49.

Age in years	10	11	12
Number of pupils	6	27	7

The table above shows the number of pupils in each age group in a class. What is the probability that a pupil chosen at random is at least 11 years old?
A. $\quad{ }^{27} /{ }_{40}$
B. $\quad 17 / 20$
C. $\quad 33 /{ }_{40}$
D. $\quad 3 / 20$
50. In a survey, it was observed that 20 students read newspapers and 35 read novels. If 40 of the students read either newspaper or novels, what is the
probability of the students who read both newspapers and novel?
$\begin{array}{ll}\text { A. } & 1 / 2 \\ \text { C } & 3 / 8\end{array}$
$\begin{array}{ll}\text { B. } & 2 / 3 \\ \text { D. } & 3 / 11\end{array}$

Mathematics 1995

1. Calculate $3310_{5}-1442_{5}$
A. 1313_{5} B. 2113_{5} C. 4302_{5}
D. 1103_{5}
2. Convert 3.1415926 to 5 decimal places
A. 3.14160
B. 3.14159
C. 0.31415
D. 3.14200
3. The length of a notebook 15 cm , was measured as 16.8 cm . calculate the percentage error to 2 significant figures.
A. 12.00%
B. 11.00%
C. 10.71%
D. 0.12%
4. A worker's present salary is \#24,000 per annum. His annual increment is 10% of his basic salary. What would be his annual salary at the beginning of the third year?
A. \#28,800
B. \#29,040
C. \#31
1,200
D.\#31,944
5. Express the product of 0.0014 and 0.011 in standard form.
A. 1.54×10^{2}
B. 1.54×10^{-3}
C. 1.54×10^{4}
D. 1.54×10^{-5}
6. Evaluate $\left(\frac{81 \frac{3 / 4}{3}-27^{1 / 3}}{3 \times 2^{3}}\right)$
A. 27
B. 1 C. $1 / 3$
D. $1 / 8$
7. Find the value of $(16)^{3 / 2}+\log _{10} 0.0001+\log _{2} 32$
A. 0.065
B. 0.650
C. 6.500
D. 65.00
8. Simplify $\sqrt{ } 12-\sqrt{ } 3$
A. $1 / 3$
B. 0
C. 9/15
D. 1
9. Four members of a school first eleven cricket team are also members of the first fourteen rugby team. How many boys play for at least one of the two teams?
A. 25
B. 21
C. 16
D. 3
10. If $S=\left(x: x^{2}=9, x>4\right)$, then S is equal to
A. 0
B. $\{0\}$
C. f
D. $\{\mathrm{f}\}$
11. If $x-1$ and $x+1$ are both factors of the equation $x^{3}+$ $p x^{3}+q x+6=0$, evaluate p and q
A. $-6,-1$
B. 6,1
C. -1
D. $6,-6$
12.

Find a positive value of p if the equation $2 x^{2}-p x+p$ leaves a remainder 6 when added
A. 1
B. 2 C. 3
D. 4
13. Find r in terms of K, Q and S if $s=2 r \sqrt{ }(Q \pi T+K)$
A. $\frac{\mathrm{r}^{2}}{2 \pi r^{2} Q}-\mathrm{k}$
B. $\frac{\mathrm{r}^{2}}{4 \pi r^{2} Q}-\mathrm{k}$
C. $\frac{r^{2}}{2 \pi r 2 \mathrm{Q}}-\mathrm{k}$
D. $\frac{r^{2}}{4 \pi r 2 Q}-k$
14. The graph of $f(x)=x^{2}-5 x+6$ crosses the x-axis at the points
A. $(-6,0)(-1,0)$
B. $(-3,0)(-2,0)$
C. $(-6,0)(1,0)$
D. $(2,0)(3,0)$
15. Factorize completely the expression

$$
a b x^{2}+6 y-3 a x-2 b y x
$$

A. $(a x-2 y)(b x-3)$
B. $(b x+3)(2 y-a x)$
C. $(b x+3)(a x-2 y)$
D. $(a x-2 y)(a x-b)$
16. Solve the following inequality $(x-3)(x-4) \leq 0$
A. $\quad 3 \leq x \leq 4$
B. $\quad 3<x<4$
C. $3 \leq x<4 \quad$ D. $3<x \leq 4$
17. The $4^{\text {th }}$ term of an A . P is 13 cm while the $10^{\text {th }}$ term is 31 . find the $31^{\text {st }}$ term.
A. 175
B. 85
C. 64
D. 45
18. Simplify $\frac{x 2-1}{x^{3}+2 x^{2}-x-2}$
A. $\quad 1 / x+2$
B. $\quad x-1 / x+1$
C. $x-1 / x+2$
D. $1 / x-2$
19. Express $5 \mathrm{x}-1 / 2(\mathrm{x}-2)(\mathrm{x}-3)$ in partial fraction
$\begin{array}{llll}\text { A. } & 2 / \mathrm{x}-2-3 / \mathrm{x}-3 & \mathrm{~B} . & 2 / \mathrm{x}-2+3 / \mathrm{x}-3 \\ \mathrm{C} . & 2 / \mathrm{x}-3-3 \mathrm{x}-2 & \mathrm{D} . & 5 / \mathrm{x}-3+4 / \mathrm{x}-2\end{array}$

Use the graph of the curve $y=f(x)$ above to solve the inequality $\mathrm{f}(\mathrm{x})>0$.
A. $\quad-1 \leq x \leq 1, x>2$
B.
$\mathrm{x} \leq-1,1,<\mathrm{x}>2$
C. $x \leq-1,1 \leq x \leq 2$ D. $x \leq 2,-1 \leq x \leq 1$
21. Which of the following binary operation is commutative in a set of integers?
A. $\quad a^{*} b=a+2 b$
B. $\quad a^{*} b=a+b-a b$
C. $\quad a^{*} b=a^{2}+b$
D. $a^{*} b=a(b+1) / 2$
22. If $\mathrm{a} * \mathrm{~b}=+\sqrt{ } \mathrm{ab}$, Evaluate $2 *(12 * 27)$
A. $\quad 12$
B. $\quad 9$
C. 6
D. 2
23. Find the sum to infinity of the following sequence $1,9 / 10,(9 / 10)^{2},(9 / 10)^{3}$
A. $1 / 10$
B. $\quad 9 / 10$
C. $10 / 9$
D. $\quad 10$
24. Find the value of K if $\left|\begin{array}{ll}2, & 1 \\ 2, & 1 \\ 1,3 & \mathrm{k}\end{array}\right|=23$
$\begin{array}{lll}\text { A. } & 1 & \text { B. } \\ \sim & 2\end{array}$
25. If $\mathrm{X}=$
$\left.\begin{array}{ll}1, & 2 \\ 0, & 3\end{array} \right\rvert\, \quad$ and $\mathrm{Y} \left\lvert\,=\begin{array}{ll}2, & 1 \\ 4, & 3\end{array}\right.$
A.
$(10,7)$
B. $(2,7)$
$(12,9)$
D. $(4,3)$
C.
$(4,6)$
$(10,9)$
26.

Determine the value of x in the figure above
A. 134^{0}
B. $\quad 81^{\circ}$
C. $\quad 53^{\circ}$
D. $\quad 46^{0}$
27.

PT is a tangent to the circle TYZX, YT $=\mathrm{YX}$ and $<$ PTX $=50^{\circ}$. calculate $<$ TZY
A. $\quad 50^{0}$
B. $\quad 65^{0}$
C. $\quad 85^{0}$
D. 130°
28. In a triangle $\mathrm{XYZ}, \angle \mathrm{YXZ}=440^{\circ}$ and $\angle \mathrm{XYZ}=112^{\circ}$. calculate the acute angle between the internal triangle of $\angle \mathrm{XYZ}$ and $\angle \mathrm{XZY}$.
A. $\quad 42^{0}$
B. $\quad 56^{0}$
C. $\quad 68^{\circ}$
D. $\quad 78^{0}$
29. Find the distance between two towns $\mathrm{P}\left(45^{\circ} \mathrm{N}, 30^{\circ} \mathrm{N}\right)$ and $\mathrm{Q}\left(15^{\circ} \mathrm{S}, 30^{\circ} \mathrm{W}\right)$ if the radius of the earth is 7000 km .
A. $\frac{1100}{3}$
B. $\frac{2200}{3}$
C. 11000
3
30. Two perpendicular lines PQ and QR intersect at $(1,-1)$. If the equation of $P Q$ is $x-2 y+4=0$, find the equation of QR.
A. $x-2 y+1=0$
B. $2 x+y-3-0$
C. $x-2 y-3=0$
D. $2 x+y-1=0$
31. P is on the locus of a point equidistant form two given points X and Y . UV is a straight line through Y parallel to the locus. If $<\mathrm{PYU}$ is 40° find $<\mathrm{XPY}$
A. 100°
B. $\quad 80^{\circ}$
C.
$\quad 50^{\circ}$
D. 40°
32.

In the diagram above, k, m, and n are parallel lines. What is the value of the angle marked x ?
A. $\quad 37^{0}$
B. $\quad 63^{\circ}$
C. $\quad 117^{\circ}$
D. 153^{0}

In the diagram above, the base diameters is 14 cm while the height is 12 cm . Calculate the total surface area if the cylinder has both a base and a top $(\mathrm{p}=22 / 7)$
A. $\quad 836 \mathrm{~cm}^{2}$
B. $528 \mathrm{~cm}^{2}$
C. $308 \mathrm{~cm}^{2}$
D. $\quad 154 \mathrm{~cm}^{2}$
34.

In the diagram above, find PQ if the area of triangle PQR is $35 \mathrm{ccm}^{2}$
A. $\quad 97 \mathrm{~cm}$
B. 10 cm
C. $\quad 14 \mathrm{~cm}$
D. $\quad 17 \mathrm{~cm}$
35. A schoolboy lying on the ground 30m away from the foot of a water tank lower observes that the angle of elevation of the top of the tank is 60°. Calculate the height of the water tank.
A. 60 m
B. $\quad 30.3 \mathrm{~m}$
C. $\quad 20.3 \mathrm{~m}$
D. $\quad 10.3 \mathrm{~m}$
36. QRS is a triangle with $\mathrm{QS}=12 \mathrm{~m}, \angle \mathrm{RQS}=30^{\circ}$ and $<\mathrm{QRS}=45^{\circ}$, calculate the length of RS.
A. $\quad 18 \sqrt{2} \mathrm{~m}$
B. $\quad 12 \sqrt{ } 2 \mathrm{~m}$
C. $\quad 6 \sqrt{2 m}$
D. $\quad 3 \sqrt{ } 2 m$
37. Which of the following is a sketch of $y=3 \sin x$?
A.

C.

38. The derivative of $\operatorname{cosec} x$ is
A. $\quad \tan x \operatorname{cosec} x$
B. $\quad-\cot x \operatorname{cosec} x$
C. $\quad \tan x \sec x$
D. $\quad-\cot \mathrm{x} \sec \mathrm{x}$
39. For what value of x is the tangent o the curve $y=x^{2}-$ $4 \mathrm{x}+3$ parallel to the $\mathrm{x}-$ axis?
A. 3
B. 2
C. 1
D. 0
40. Two variables x and y are such that $d y / d x=4 x-3$ and y $=5$ when $x=2$. find y in terms of x
A. $2 x^{2}-3 x+5$
B. $2 x^{2}-3 x+3$
C. $2 x^{2}-3 x$
D. 4
41. Find the area bounded by the curve $y=3 x^{2}-2 x+1$, the coordinates $\mathrm{x}=1$ and $\mathrm{y}=3$ and the x -axis
A. 249.
B. 22
47
C. 21
D. 20

Age in years	13	$\mathbf{1 4}$	$\mathbf{1 5}$	16	$\mathbf{1 7}$
No . of students	$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{3 0}$	$\mathbf{4 2}$	15

The frequency distribution above shows the ages of students in a secondary school. In a pie chart constructed to represent the data, the angle corresponding to the 15 years-old is
A. 27° B. 30° C. 54^{0} D. 108^{0}
43.

The pie chart above shows the distribution of students in a secondary school class. If 30 students offered French, how many offered C.R.K?
A. 25 B. 15 C. 10 D. 8
44. The mean and the range of the set of numbers $0.20,1.00,0.90,1.40,0.80,0.80,1.20$, and 1.10 are m and r respectively. Find $m+r$
A. 1.11 B. 1.65 C. 1.85 D. 2.45
45.

Class	$1-3$	$4-6$	$7-9$
Frequency	5	8	5

Find the standard deviation of the data using the table above
A .5 B. $\sqrt{ } 6$ C. $5 / 3$ D. $\sqrt{ } 5$
46. The variance of the scores $1,2,3,4,5$ is
A. 1.2 B. 1.4 C. 2.0 D. 3.0

Use the table below to answer questions 47 and 48

Class Interval	Frequency	Class Boudaries	Class Mid-point
1.5-1.9	2	$1.45-1.95$	1.7
$2.0-2.4$	1	$1.95-2.45$	2.2
$2.5-2.9$	4	$2.45-2.95$	2.7
3.0-3.4	15	$2.95-3.45$	3.2
$3.5-3.9$	10	$3.45-3.95$	3.7
$4.0-4.4$	5	$3.95-4.45$	4.2
$4.5-4.9$	3	$4.45-4.95$	4.7

47. find the mode of the distribution
A. 3.2
B. 3.4
C. 3.7
D. 4.2
48. The median of the distribution is
A. 4.0
B. 3.5
C. 3.2
D. 3.0
49. Let P be a probability function on set S , where $\mathrm{S}=$ $\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right)$ find $\mathrm{P}\left(\mathrm{a}_{1}\right)$ if $\mathrm{P}\left(\mathrm{a}_{2}\right)=\mathrm{P}\left(\mathrm{a}_{3}\right)=1 / 6$ and $\mathrm{P}\left(\mathrm{a}_{4}\right) 1 / 5$
A. $7 / 10$
B 2/3
C. $1 / 3$
D. $3 / 10$
50. A die has four of its faces coloured while and the remaining two coloured black. What is the probability that when the die is thrown two consecutive times, the top face will be white in both cases?
A. $2 / 3$
B. $1 / 9$
C. $4 / 9$
D. $1 / 36$

Mathematics 1997

1. If $(1 \mathrm{PO} 3)_{4}=115_{10}$, find P
A. 0
B. $\quad 1$
C. 2
D. 3
2. Evaluate $64.764^{2}-35.236^{2}$ correct to 3 significant figures
A. 2960
B 2950
C. 2860
D. 2850
3. Find the value of $(0.006)^{3}+(0.004)^{3}$ in standard form.
A. $\quad 2.8 \times 10^{-9}$
B $\quad 2.8 \times 10^{-8}$
C. $\quad 2.8 \times 10^{-7}$
D. $\quad 2.8 \times 10^{-6}$
4. Given that $\log _{\mathrm{a}} 2=0.693$ and $\log _{\mathrm{a}} 3=1.097$, find $\log _{\mathrm{a}} 13.5$
A. $\quad 1.404$
B. $\quad 1.790$
C. 2.598
D. $\quad 2.790$
5. Simplify $\log _{2} 96-2 \log _{2} 6$
A. $\quad 2-\log _{2} 3$
B. $3-\log _{2} 3$
C. $\quad \log _{2} 3-3$
D. $\quad \log _{2} 3-2$
6. If $8^{x / 2}=\left[2^{3 / 8}\right]\left[4^{3 / 4}\right]$, find x
A. $3 / 8$
B. $3 / 4$
C. $4 / 5$
D. $5 / 4$
7. Simplify $(2 \sqrt{ } 3+3 \sqrt{ } 5) /(3 \sqrt{5}-2 \sqrt{ } 3)$
A. $19+4$ " $15 / 11$
B. $19+4$ " $15 / 19$
C. $19+2 " 15 / 11$
D. $19+2 " 15 / 19$
8. Find the simple interest rate per cent per annum at which \#1000 accumulates to \#1240 in 3 years.
A. 6%
B. 8%
C. 10%
D. 12%

9 If $\mathrm{U}=\{\mathrm{S}, \mathrm{P}, \mathrm{L}, \mathrm{E}, \mathrm{N}, \mathrm{D}, \mathrm{O}, \mathrm{U}, \mathrm{R}\}$
$X=\{S, P, E, N, D\}$
$\mathrm{Y}=\{\mathrm{P}, \mathrm{N}, \mathrm{O}, \mathrm{U}, \mathrm{R}\}$
Find $\mathrm{X} \cap\left(\mathrm{Y}^{\prime} \mathrm{UZ}\right)$.
A. $\quad\{P, O, U, R\}$
B. $\quad\{S, P, D, R\}$
C. $\{P, N, D\}$
D. $\{N, D, U\}$
10. A survey of 100 students in an institution shows that 80 students speak Hausa and 20 students Igbo, while only 9 students speaks both languages. How many students neither Hausa nor Igbo?
A. 0
B. $\quad 9$
C. 11
D. 20
11. If the function $(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}^{2}+\mathrm{qx}-6$ is divisible by $\mathrm{x}+$ 1 , find q.
A. -5
B. -2
C. 2
D. 5
12. Solve the simultaneous equations

\[

\]

13. Find the minimum value of $x^{2}-3 x+2$ for all real values of x.
A. $\quad-1 / 4$
B. $-1 / 2$
C. $1 / 4$
D. $\quad 1 / 2$
14. Make f the subject of the formula

$$
\mathrm{t}=\sqrt{\left(\frac{1}{\left(\frac{1}{f}+\frac{1}{g}\right)}\right.}
$$

A. $\quad g v-t^{2} / g t^{2}$
B. $\quad g t^{2} / g v-t^{2}$
C. $\quad \mathrm{v} / \mathrm{t}^{1 / 2-1 / \mathrm{g}}$
D. $\mathrm{gv} / \mathrm{t}^{2}-\mathrm{g}$
15. What value of g will make the expression $4 x^{2}-18 x y$ -g a perfect square?
A. $\quad 9$
B. $\quad 9 y^{2} / 4$
C. $\quad 81 y^{2}$
D. $81 \mathrm{y}^{2} / 4$
16. Find the value of K if ${ }^{5+2 \mathrm{r}} /{ }_{(\mathrm{r}+1)(\mathrm{r}-2)}$ expressed in partial fraction is ${ }^{\mathrm{K}} / \mathrm{r}_{-2}+{ }^{\mathrm{L}} / \mathrm{r}+1$, where K and L are constants.
A. 3
B. 2
C. 1
D. -1
17. Let $f(x)=2 x+4$ and $g(x)=6 x+7$ where $g(x)>0$. solve the inequality ${ }^{\mathrm{f}(\mathrm{x})} \mathrm{g}_{\mathrm{g}(\mathrm{x})}<1$
A. $\quad x<-3 / 4$
B. $\quad x>-4 / 3$
C. $\quad x>-3 / 4$
D. $\quad x>-12$
18. Find the range of values of x which satisfies the inequality $12 x^{2}<x+1$
A. $\quad-1 / 4<x<1 / 3$
B. $\quad 1 / 4<x<1 / 3$
C. $-1 / 3<x<1 / 4$
D. $-1 / 4<x<-1 / 3$
19. S_{n} is the sum of the first n terms of a series given by $S_{n}=n^{2}-1$. find the nth term.
A. $\quad 4 n+1$
B. $\quad 4 n-1$
C. $\quad 2 \mathrm{n}+1$
D. $2 n-1$
20. The nth term of a sequence is given by 3^{1-n}. find the sum of the first three terms of the sequence.
A. $\quad 13 / 9$
$\begin{array}{ll}\text { B } & 1 \\ \text { D. } & 1 / 9\end{array}$
C. $\quad 1 / 3$
21. Two binary operations * and $\ddot{\mathrm{A}}$ are defined as $\mathrm{m}^{*} \mathrm{n}=$ $\mathrm{mn}-\mathrm{n}-1$ and $\mathrm{m} \ddot{\mathrm{A}} \mathrm{n}=\mathrm{mn}+\mathrm{n}-2$ for all real numbers m, n. find the values of $3 \ddot{\mathrm{~A}}(4 * 5)$.
A. 60
B. 57
C. 54
D. 42
22. If $x y=x+y-x y$, find x,

$$
\text { when }(x * 2)+(x * 3)=68
$$

A. 24
B. 22
C. -12
D. -21
23. Determines $\mathrm{x}+\mathrm{y}$ if

$$
\left|\begin{array}{rr}
2 & -3 \\
-1 & 4
\end{array}\right| \begin{aligned}
& (x) \\
& (y)
\end{aligned}\left|=\left|\begin{array}{c}
(-1) \\
(8)
\end{array}\right|\right.
$$

A. 3
C. 7
D. 12
24. Find the non-zero positive value of x which satisfies the equation
$\left[\begin{array}{lll}\mathrm{x} & 1 & 0 \\ 1 & \mathrm{x} & 1 \\ 0 & 1 & \mathrm{x}\end{array}\right]=0$
A. 2
B. $\sqrt{3}$
C. $\sqrt{2}$
D. 1
25. Each of the base angles of an isosceles triangle is 58° and all the vertices of the triangle lie on a circle. Determine the angle which the base of the triangle subtends at the centre of the circle.
A. 128^{0}
B. $\quad 116^{0}$
C. $\quad 64^{0}$
D. 58^{0}
26.

From the figure above, $\mathrm{FK} / / \mathrm{GR}$ and $\mathrm{FH}=\mathrm{GH},<\mathrm{RFK}$ $=34^{\circ}$ and $\angle \mathrm{FGH}=47^{\circ}$. calculate the angle marked x.
A. $\quad 42^{0}$
B. $\quad 52^{0}$
C. $\quad 64^{0}$
D. $\quad 72^{0}$
27.

The figure above shows circles of radii 3 cm and 2 cm with centres at X and Y respectively. The circles have a transverse common tangent of length 25 cm . Calculate XY.
A. $\quad 630 \mathrm{~cm}$
B. $\quad 626 \mathrm{~cm}$
C. $\quad 615 \mathrm{~cm}$
D. $\quad 600 \mathrm{~cm}$
28. A chord of a circle diameter 42 cm subtends an angle of 60° at the centre of the circle. Find the length of the minor arc.
A. $\quad 22 \mathrm{~cm}$
B. $\quad 44 \mathrm{~cm}$
C. $\quad 110 \mathrm{~cm}$
D. $\quad 220 \mathrm{~cm}$
[$\pi=22 / 7$]
29. An arc of a circle subtends an angle of 70° at the centre. If the radius of the circle is 6 cm , calculate the area of the sector subtended by the given angle.
A. $\quad 22 \mathrm{~cm}^{2}$
B. $\quad 44 \mathrm{~cm}^{2}$
C. $\quad 66 \mathrm{~cm}^{2}$
D. $88 \mathrm{~cm}^{2}$
30.

Find the volume of the prism above.
A. $\quad 990 \mathrm{~cm}^{3}$
B. $\quad 880 \mathrm{~cm}^{3}$
C. $\quad 550 \mathrm{~cm}^{3}$
D. $\quad 495 \mathrm{~cm}^{3}$
31. A cone with the sector angle of 45° is cut out of a circle of radius rcm . find the base radius of the cone.
A. $\quad \mathrm{r} / 16 \mathrm{~cm}$
B. $\quad \mathrm{r} / 8 \mathrm{~cm}$
C. $\quad \mathrm{r} / 4 \mathrm{~cm}$
D. $\quad \mathrm{r} / 2 \mathrm{~cm}$
32. A point P moves so that it is equidistant from points L and M. if $L M$ is 16 cm , find the distance of P from $L M$ when P is 10 cm from L.
A. $\quad 12 \mathrm{~cm}$
B. 10 cm
C. $\quad 8 \mathrm{~cm}$
D. $\quad 6 \mathrm{~cm}$
33. The angle between the positive horizontal axis and a given line is 135°. find the equation of the line if it passes through the point $(2,3)$.
A. $\quad x-y=1$
B. $\quad x+y=1$
C. $\quad x+y=5$
D $\quad x-y=5$
34. Find the distance between the point $Q(4,3)$ and the point common to the lines $2 x-y=4$ and $x+y=2$
A. $\quad 3 \sqrt{10}$
B. $\quad 3 \sqrt{5}$
C. $\sqrt{26}$
D. $\sqrt{13}$
35. The angle of elevation of a building from a measuring instrument placed on the ground is 30°. if the building is 40 m high, how far is the instrument from the foot of the building?
A. $\quad 20 \sqrt{ } 3 \mathrm{~m}$
B. $\quad 40 \sqrt{ } 3 \mathrm{~m}$
C. $\quad 20 \sqrt{ } 3 \mathrm{~m}$
D. $40 \sqrt{ } 3 \mathrm{~m}$
36. In a triangle XYZ , if $\angle \mathrm{XYZ}$ is 60°, $\mathrm{XY}=3 \mathrm{~cm}$ and $Y Z=4 \mathrm{~cm}$, calculate the length of the side $X Z$.
A. " 23 cm
B. $\quad 13 \mathrm{~cm}$
C. $2 " 5 \mathrm{~cm}$
D. $\quad 2 " 3 \mathrm{~cm}$
37.

In the figure above, XYZ is a triangle with $\mathrm{XY}=$ $5 \mathrm{~cm}, \mathrm{XZ}=2 \mathrm{~cm}$ and XZ is produced to E making the angle $Y Z E=150^{\circ}$. if the angle $X Y Z=$ è, calculate the value of the sin è.
A. $3 / 5$
B. $\quad 1 / 2$
C. $2 / 5$
D. $1 / 5$
38. Differentiate $\frac{6 x^{3}-5 x^{2}+1}{3 x^{2}}$
A. $\quad 2+2 / 3 x^{3}$
B. $\quad 2+1 / 6 x$
C. $\quad 2-2 / 3 x^{3}$
D. $2-1 / 6 x$
39. $d / d x \cos \left(3 x^{2}-2 x\right)$ is equal to
A. $\quad-\sin (6 x-2)$
B. $-\sin \left(3 x^{2}-2 x\right)$
C. $(6 x-2) \sin \left(3 x^{2}-2 x\right)$
D. $(6 x-2) \sin \left(3 x^{2}-2 x\right)$
40. Find the gradient of the curve $y=2 \sqrt{ } x-1 / x$ at the point $x=1$
A. 0 B. 1
C. 2
D. 3
41. Integrate $1 / x+\cos x$ with respect to x
A. $\quad-1 / x^{2}+\sin x+k$
B. $\quad \ln x+\sin x+k$
C. $\quad 1 n x-\sin x+k \quad$ D. $\quad-1 / x^{2}-\sin x+k$
42. If $y=x\left(x^{4}+x^{2}+1\right)$, evaluate $\int_{{ }_{-1}}^{1} d y x$
A. $11 / 12$
B. $11 / 16$
C. $5 / 6$
E. 0
43.

The pie chart above shows the income of a civil servant in a month. If his monthly income is \#6000, find his monthly basic salary.
A. \#2000
B. \#2600
C. \#3100
D. \#3450
44.

In an examination, the result of a certain school is as shown in the histogram above. How many candidates did the school present?
A. 12
B. 16
C. 18
D. 19
45.

Age	20	25	30	35	40	45
No . of students	3	5	1	1	2	3

Find the median age of the frequency distribution in the table above
A. 20
B. 25
C. 30
D. 35

46 The following are the scores of ten students in a test of 20 marks; $15,16,17,13,16,8,5,16,19,17$. what is the modal score?
A. 13
B. 15
C. 16
D. 19
47. Find the standard deviation of the following data -$5,-4,-3,-2,-1,0,1,2,3,4,5$
A. 2
B. 3
C. $\sqrt{ } 10$
D. $\sqrt{11}$
48. Find the difference between the range and the variance of the following set of numbers $4,9,6,3,2,8,10,5,6,7$ where $\mathrm{d}^{2}=60$.
A. 2
B. 3
C. 4
D. 6
49. In a basket of fruits, there are 6 grapes, 11 bananas and 13 oranges. If one fruit is chosen at random, what is the probability that the fruit is either a grape or a banana?
A. 17/30
D. $5 / 30$
50. A number is selected at random between 10 and 20, both numbers inclusive. Find the probability that the numbers is an even number.
A. $\quad 5 / 11$
B. $\quad 1 / 2$
C. $\quad 6 / 11$
D. $\quad 7 / 10$

Mathematics 1998

1. If $1011_{2}+X_{7},=25_{10}$, solve for X
A. $\quad 14$
B. 20
C. 24
D. 25
2. Evaluate $[1 / 0.03 \div 1 / 0.024]^{-1}$, correct to 2 decimal places
A. $\quad 3.76$
B. $\quad 1.25$
C. 0.94
D. 0.75
3. If $b^{3}=a^{-3}$ and $c^{1 / 3}=a^{1 / 2} b$, express in terms of a
A. $\quad a^{-1 / 2}$
B. $\quad a^{1 / 2}$
C. $a^{3 / 2}$
D. $\quad a^{-2 / 3}$
4. \quad Given that $\log _{4}(y-1)+\log _{4}(1 / 2 x)=1$ and $\log _{2}(y+$ 1) $+\log _{2} x=2$, solve for x and y respectively
A. $\quad 2,3$
B. $\quad 3,2$
C. $-2,-3$
D. $\quad-3,-2$
5. Find the value of K if $\mathrm{K} / " 3+" 2=" 3-2$
A. 3
B. 2
C. "3
D. "2
6. A market woman sells oils in cylindrical tins 10 cm deep and 6 cm diameter at \#15.00 each. If she bought a full cylindrical jug 18 cm deep and 10 cm in diameter for \#50.00, how much did she make by selling all the oil?
A. \#62.50
B. \#35.00
C. \#31.00
D. \#25.00
7. A man is paid r naira per hour for normal work and double rate for overtime. If he does a 35 -hour week which includes q hours of overtime, what is his weekly earning in naira?
A. $\quad \mathrm{r}(35+\mathrm{q})$
B. $\quad q(35 r-q)$
C. $\quad q(35 r+r)$
D. $r(35 r-q)$
8. Given the universal set $U=\{1,2,3,4,5,6$,$\} and the$ sets $P=\{1,2,3,4\} Q=,\{3,4,5\}$ and $R=\{2,4,6\}$. Find PÈ(QER).
A. $\{4\}$
B. $\quad\{1,2,3,4\}$
C. $\{1,2,3,5,6\}$
D. $\quad\{1,2,3,4,5,6\}$
9.

In the venn diagram above, the shaded region is
A. (PÇQ)ER
B. (PÇQ)ÇR
C. (PÇQ')ÇR
D. (PÇQ')ÇR
10. When the expression $\mathrm{pm}^{2}+\mathrm{qm}+1$ is divided by (m - 1), it has a remainder 2 and when divided by ($m+$ 1) the remainder is 4 . find p and q respectively
A. $\quad 2,-1$
B. $\quad-1,2$
C. $\quad 3,-2$
D. $-2,3$
11. Factorize $r^{2}-r(2 p+q)+2 p q$
A. $\quad(r-2 q)(2 r-p)$
B. $\quad(r-q)(r+p)$
C. $\quad(r-q)(r-2 p)$
D. $\quad(2 r-q)(r+p)$
12. Solve the equation $\sqrt{\mathrm{x}}-\sqrt{(x-2)}-1=0$
A. $\quad 3 / 2$
B. $\quad 2 / 3$
C. $\quad 4 / 9$
D. $9 / 4$
13. Find the range of values of m for which the roots of the equation $3 x^{2}-3 m x+\left(m^{2}-m-3\right)=0$
A. $\quad-1<m<7$
B. $\quad-2<m<6$
C. $\quad-3<m<9$
D. $\quad-4<m<8$
14. Make a / x the subject of the formula

$$
x+a / x-a=m
$$

A. $\quad m-1 / m+1$
B. $\quad 1+\mathrm{m} / 1-\mathrm{m}$
C. $1-\mathrm{m} / 1+\mathrm{m}$
D. $m+1 / m-1$
15. Divide $2 x^{3}+11 x^{2}+17 x+6$ by $2 x+1$
A. $\quad x^{2}+5 x+6$
B. $\quad 2 x^{2}+5 x+6$
C. $\quad 2 x^{2}-5 x+6$
D. $\quad x^{2}-5 x+6$
16. Express in partial fractions

	$\frac{11 x+2}{6 x^{2}-x-1}$	
A.	$1 / 3 x-1+3 / 2 x+1$ B.	$3 / 3 x+1-1 / 2 x-1$
C.	$3 / 3 x-1-1 / 2 x+1$ D.	$1 / 3 x+1+3 / 2 x-1$

17. If x is a positive real number, find the range of values for which
$1 / 3 \mathrm{x}+1 / 2>1 / 4 \mathrm{x}$
A. $\quad x>-1 / 6$
B. $\quad x>0$
C. $0<x<4$
D. $0<x<1 / 6$
18.

The shaded area above represents
A. $x \geq 0,3 y+2 x \geq 6$
B. $x \geq 0, y \geq 3,3 x+2 y \geq 6$
C. $x \geq 2, y \geq 0,3 x+2 y \leq 6$
D. $x \geq 0, y \geq 0,3 x+2 y \geq 6$
19. If $p+1,2 p-10,1-4 p^{2}$ are the consecutive terms of an arithmetic progression, find the possible values of p .
A. $-4,2$
B. $\quad-2,4 / 11$
C. $-11 / 4,2$
D. $5,-3$
20. The sum of the first three terms of a geometric progression is half its sum to infinity. Find the positive common ration of the progression.
A. $\quad 1 / 4$
B. $1 / 2$
C. $1 / 3 " 3$
D. $1 / 3 " 2$
21.

\otimes	\mathbf{p}	\mathbf{q}	\mathbf{r}	\mathbf{s}
\mathbf{P}	\mathbf{r}	\mathbf{p}	\mathbf{r}	\mathbf{p}
\mathbf{q}	\mathbf{p}	\mathbf{q}	\mathbf{r}	\mathbf{s}
\mathbf{r}	\mathbf{r}	\mathbf{r}	\mathbf{r}	\mathbf{r}
\mathbf{s}	\mathbf{q}	\mathbf{s}	\mathbf{r}	\mathbf{q}

The identity element with respect to the multiplication shown in the table above is
A. $\quad \mathrm{p}$
B. $\quad \mathrm{q}$
C. $\quad \mathrm{r}$
D. s
22. The binary operation *is defined by $x * y=x y-y-x$ for all real values x and $\mathrm{y} x * 3=2 * \mathrm{x}$, find x .
A. $\quad-1$
B. 0
C. 1
D. 5
23. The determinant of matri in terms of x is
A. $\quad-3 x^{2}-17$
B. $\quad-3 x^{2}+9 x-1$
C. $\quad 3 x^{2}+17$
D. $\quad 3 x^{2}-9 x+5$
24. Let $\mathrm{I}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right| \mathrm{P}=\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right| \mathrm{Q}=\left|\begin{array}{cc}\mathrm{u}, 4+\mathrm{u} \\ -2 \mathrm{v}, & \mathrm{v}\end{array}\right|$
be 2×2 matrices such that $P Q=1$. find (u, v)
A. $\quad(-5 / 2,-1)$
B. $\quad(-5 / 2,3 / 2)$
C. $(-5 / 6,1)$
D. $(5 / 2,2 / 3)$
25.

In the diagram above, $P R$ is a diameter of the circle PQRS. PST and QRT are straight lined. Find Đ QSR.
A. $\quad 20^{0}$
B. $\quad 25^{\circ}$
C. $\quad 30^{\circ}$
D. $\quad 35^{\circ}$
26.

In the figure above, PQST is a parallelogram and TSR is a straight line. If the area of $\angle \mathrm{QRS}$ is $20 \mathrm{~cm}^{2}$, find the area of the trapezium PQRT.
A. $\quad 35 \mathrm{~cm}^{2}$
B. $\quad 65 \mathrm{~cm}^{2}$
C. $\quad 70 \mathrm{~cm}^{2}$
D. $\quad 140 \mathrm{~cm}^{2}$

TQ is tangent to circle $\mathrm{XYTR} . \angle \mathrm{YXT}=32^{\circ}$, $\angle \mathrm{RTQ}=40^{\circ}$. find $\angle \mathrm{YTR}$.
A. 108°
B. $\quad 121^{0}$
C. $\quad 140^{0}$
D. 148^{0}
29. A chord of a circle radius $O 3 \mathrm{~cm}$ subtends an angle of 60° on the circumference of the circle. Find the length of the chord.
A. $\quad \sqrt{3} / 2 \mathrm{~cm}$
B. $\quad 3 / 2 \mathrm{~cm}$
C. $\quad \sqrt{3} \mathrm{~cm}$
D. 3 cm
30. A cylindrical drum of diameter 56 cm contains 123.2 litres of oil when full. Find the height of the drum in centimeters.
A. $\quad 12.5$
B. $\quad 25.0$
C. 45.0
D. 50.0
31. The locus of all points at a distance 8 cm from a point N passes through point T and S. if S is equidistant from T and N , find the area of triangle STN.
A. $\quad 4 \sqrt{ } 3 \mathrm{~cm}^{2}$
B. $\quad 16 \sqrt{ } 3 \mathrm{~cm}^{2}$
C. $\quad 32 \mathrm{~cm}^{2}$
D. $\quad 64 \mathrm{~cm}^{2}$
32. If the distance between the points $(x, 3)$ and $(-x, 2)$ is 5 . find x
A. $\quad 6.0$
B. $\quad 2.5$
C. $\sqrt{6}$
D. $\quad \sqrt{3}$

The midpoint of the segment of the line $y=4 x+3$ which lies between the x -axis and the y -axis is
A. $\quad(-3 / 2,3 / 2)$
B. $\quad(-2 / 3,3 / 2)$
C. $(3 / 8,3 / 2)$
D. $(-3 / 8,3 / 2)$
34. Solve the equation

$$
\cos x+\sin x=1 / \cos x-\sin x
$$

for values of x such that $0 \leq x<2 \pi$
A. $\quad \pi / 2,3 \pi / 2$
B. $\pi / 3,2 \pi / 3$
C. $0, \pi / 3$
D. $\quad 0, \pi$
35.

In the diagram above, QTR is a straight line and \angle $\mathrm{PQT}=30^{\circ}$. find the sine of $\angle \mathrm{PTR}$.
A. $\quad 8 / 15$
B. $2 / 3$
C. $3 / 4$
D. $15 / 16$
36. For what value of x does $6 \sin (2 x-25)^{0}$ attain its maximum value in the range $0^{\circ} \leq x \leq 180^{\circ}$?
A.
B. $\quad 32 \frac{1}{2}$
C. $\quad 571 / 2$
D. $147 \frac{1}{2}$
37. From the top of a vertical mast 150 m high, two huts on the same ground level are observed. One due east and the other due west of the mast. Their angles of depression are 60° and 45° respectively. Find the distance between the huts.
A. $\quad 150(1+\sqrt{ } 3) \mathrm{m}$
B. $\quad 50(3+\sqrt{ } 3) \mathrm{m}$
C. $150 \sqrt{ } 3 \mathrm{~m}$
D. $50 / \sqrt{ } 3 m$
38. If $y=243(4 x+5)^{-2}$, find dy/dx when $x=1$
A. $\quad-8 / 3$
B. $\quad 3 / 8$
C. $\quad 9 / 8$
D. $-8 / 9$
39. Differentiate $x / \cos x$ with respect to x.

A.	$1+x \sec x \tan x$	B.	$1+\sec ^{2} x$
C.	$\cos x+x \tan x$	D.	$\sec x+x \sec x \tan x$

40. Evaluate $\int \pi_{2}\left(\sec ^{2} x-\tan ^{2} x\right) \mathrm{dx}$
A. $\pi / 2$
B. $\pi-2$
C. $\quad \pi / 3$
D. $\quad \pi+2$
41. Find the equation of the curve which passes through the point $(2,5)$ and whose gradient at any point is given by $6 x-5$
A. $\quad 6 x^{2}-5 x+5$
B. $\quad 6 x^{2}+5 x+5$
C. $\quad 3 x^{2}-5 x-5$
D. $\quad 3 x^{2}-5 x+3$
42. If m and n are the mean and median respectively of the set of numbers $2,3,9,7,6,7,8,5$ and $m+2 n$ to the nearest whole number.
A. 19
B. 18
C. 13
D. 12

Average hourly earnings (N)	$5-9$	$10-14$	$15-19$	$20-24$
No . of workers	17	32	25	24

43.

Estimate the mode of the above frequency distribution.
A. $\quad 12.2$
B. $\quad 12.7$
C. $\quad 12.9$
D. $\quad 13.4$
44. Find the variance of the numbers $K, K+1, K+2$.
A. $\quad 2 / 3$
B. 1
C. $\quad \mathrm{K}+1$
D. $\quad(\mathrm{K}+1)^{2}$
45. Find the positive value of x if the standard deviation of the numbers $1, x+1,2 x+1$ is $\sqrt{ } 6$
A. $\quad 1$
B. 2
C. 3
D. 4
46. A bag contains 16red balls and 20blue balls only. How many white balls must be added to the bag so that the probability of randomly picking a red ball is equal to $2 / 5$?
A. 4
B. 20
C. 24
D. 40
47.

The pie chart above shows the monthly expenditure of a public servant. The monthly expenditure on housing is twice that of school fees. How much does the worker spend on housing if his monthly income is \#7.200?
A \#1000
B. \#2000
C. \#3000
D. \#4000
48.

The bar chart above shows the distribution of marks scored by 60 pupils in a test in which the maximum score was 10. if the pass mark was 5, what percentage of the pupils failed the test?
A. 59.4%
B. $\quad 50.0 \%$
C. $\quad 41.7 \%$
D. 25.0%
49. In a recent zonal championship games involving 10teams, teams X and Y were given Probabilities 2/ 5 and $1 / 3$ respectively of wining the gold in the football event. What is the probability that either team will win the gold?
A. $\quad 2 / 15$
B. $\quad 7 / 15$
C. $11 / 15$
D. $13 / 15$
50. If x, y can take values from the set $\{1,2,3,4$,$\} , find$ the probability that the product of x and y is not greater than 6.
A. $\quad 5 / 8$
B. $5 / 16$
C. $1 / 2$
D. $3 / 8$

1. If $\left(a^{2} b^{3} c\right) / a^{-1} b^{4} c^{5}$ What is the value of $P+2 q$?
A. $\quad 5 / 2$
B. $\quad-5 / 4$
C. $-25 / 4$
D. -10
2. Find the value of x if $\sqrt{ } 2 /(x+\sqrt{ } 2)=1 /(x-\sqrt{ } 2)$
A. $\quad 3 \sqrt{2}+4$
B. $\quad 3 \sqrt{ } 2-4$
C. $3-2 \sqrt{ } 2$
D. $\quad 4+2 \sqrt{ } 2$
3. A trader bought 100 oranges at 5 for \#1.20,20 oranges got spoilt and the remaining were sold at 4 for $\# 1.50$. find the percentage gain or loss
A. 30% gain
B. 25% gain
C. 30% loss
D. 25% loss
4. If $U=\{1,2,3,4,5,6\}, P=\{3,4,5\}, Q=\{2,4,6\}$ and $R=\{1,2,34\}$, list elements of (PÈQ'ÇR).
A. $\quad\{1,2,3,4,5,6\}$
B. $\quad\{1,2,3,4\}$
C. $\{1\}$
D. Æ
5. Divide 2434_{6} by 42_{6}
A. $\quad 23{ }_{6}$
B. $\quad 35_{6}$
C. $\quad 52_{6}$
D. $\quad 55_{6}^{6}$
6. If $2_{9} \mathrm{x}(\mathrm{Y} 3)_{9}=3_{5}(\mathrm{Y} 3)_{9}$, find the value of Y
A. $\quad 4$
B. 3
C. 2
D. 1
7. \quad Simplify $\sqrt{ }(0.0023 \times 750) /(0.00345) \times 1.25$
A. $\quad 15$
B. 20
C. 40
D. 75
8. If $\log _{8} 10=x$, evaluate $\log _{8} 5$ in terms of x.
A. $\quad 1 / 2 \mathrm{x}$
B. $\quad x-1 / 4$
C. $\quad \mathrm{x}-1 / 3$
D. $\quad \mathrm{x}-1 / 2$
9. A group of market women sell at least one of yam, plantain and maize. 12 of them sell maize, 10 sell yam and 14 sell plantain. 5 sell plantain and maize, 4 sell yam and maize, 2 sell yam and plantain only while 3 sell all the three items. How many women are in the group?
A. 25
B. 19
C. 18
D. 17
10.

$$
\text { Given that } \mathrm{Q}=(6,0) \quad \text { and } \mathrm{Q}+\mathrm{P}=(7,2)
$$

$$
(4,5)
$$

$(6,8)$
evaluate $/ \mathrm{Q}+2 \mathrm{P} /$
A. $\quad 90$
B. 96
C. 102
D. 120
11. A binary operation * is defined by $\mathrm{a} * \mathrm{~b}=\mathrm{ab}+\mathrm{b}$ for any real number a and b. if the identity element is zero, find the inverse of 2 under this operation
A. $2 / 3$
B. $1 / 2$
C. $-1 / 2$
D. $56 / 9$
12. The first term of a geometrical progression is twice its common ratio. Find the sum of the first two terms of the progression if its sum to infinity is 8
A. $8 / 5$
B. $8 / 3$
C. $72 / 25$
D. $56 / 9$
13. Tope bought x oranges at $\# 5.00$ each and some mangoes at \#4.00 each. If she bought twice as many mangoes as oranges and spent at least \#and at most \#, find the range of the value of x
A. $\quad 4 \leq x \leq 5$
B. $\quad 5 \leq x \leq 8$
C. $5 \leq x \leq 10$
D. $8 \leq x \leq 10$
14. If $m * n=m / n-n / m$, for $m, n \in R$, evaluate $-3 * 4$
A. $\quad-25 / 12$
B. $\quad-7 / 12$
C. $7 / 12$
D. $25 / 12$
15. Find the matrix T if $\mathrm{ST}=\mathrm{I}$ where $\mathrm{S}=(-1,1)$ (1, -2) and I is the identity matrix.
A. $(-2,1)$
B. $(-2,-1)$
$(-1,1)$
$(-1,-1)$
C. $(-1,-1)$
D. $(-1,-1)$
(01, -1)
$(0,1)$
16. Divide $4 x^{3}-3 x+1$ by $2 x-1$
A. $\quad 2 x^{2}-x+1$
B. $\quad 2 x^{2}-x-1$
C. $\quad 2 x^{2}+x+1$
D. $\quad 2 x^{2}+x-1$
17. Three consecutive positive integers k, l and m are such that $l^{2}=3(k+m)$. find the value of m.
A. 4
B. 5
C. 6
D. 7

18.

The shaded portion in the graph above is represented by
A. $y+x-x^{3} 0, y-x £ 0$
B. $y-+x^{33} 0, y-x £ 0$
C. $y+x-x^{3} £ 0, y+x^{3} 0$
D. $y-x+x^{3} £ 0, y+x £ 0$
19. Factorize completely
$x^{2}+2 x y+y^{2}+3 x+3 y-18$
A. $\quad(x+y+6)(x+y-3) \quad$ B. $\quad(x-y-6)(x-y+3)$
C. $\quad(x-y+6)(x-y-3)$
20. The sum of two members is twice their difference. If the difference of the numbers is P, find the larger of the two numbers.
A. $\quad \mathrm{p} / 2$
B. $3 \mathrm{p} / 2$
C. $5 \mathrm{p} / 2$
D. $3 p$
21. Express $1 / \mathrm{x}^{3}-1$
A.
B.
C.
D.
22. In $\triangle \mathrm{MNO}, \mathrm{MN}=6$ units, $\mathrm{MO}=4$ units and $\mathrm{NO}-12$ units. If the bisector of angle M meets NO at P , calculate NP.
A. $\quad 4.8$ units
B. $\quad 7.2$ units
C. $\quad 8.0$ units
D. $\quad 18.0$ units
23. Find the equation of the locus of a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ such that $\mathrm{PV}=\mathrm{PW}$, where $\mathrm{V}=(1,1)$ and $\mathrm{W}=(3,5)$
A. $\quad 2 x+2 y=9$
B. $\quad 2 x+3 y=8$
C. $2 x+y=9$
D. $x+2 y=8$
24.

Find the value of 1 in the frustum above.
A. 5 cm
B. 6 cm
C. $\quad 7 \mathrm{~cm}$
D. 8 cm
25.

Find the length XZ in the triangle above
A. $\quad \sqrt{ } 7 \mathrm{~m}$
B. $\sqrt{6} \mathrm{~m}$
C. $\sqrt{ } 5 \mathrm{~m}$
D. $\sqrt{3} m$
26. Find a positive value of a if the coordinate of the centre of a circle $x 2+y 2-2 a x+4 y-a=0$ is $(a,-2)$ and the radius is 4 units
A. $\quad 1$
B. 2
C. 3
D. 4
27. A man 1.7 m tall observes a bird on top of a tree at an angle of 30°. if the distance between the man's head and the bird is 25 m , what is the height of the tree?
A. $\quad 26.7 \mathrm{~m}$
B. $\quad 14.2 \mathrm{~m}$
C. $\quad(1.7+25 \sqrt{ } 3 \mathrm{~m}) / 3$
D. $(1.7+25 \sqrt{ } 2 \mathrm{~m}) / 2$
28.

In the figure above, TZ is tangent to the circle QPZ . Find x if $T Z=6$ units and $P Q=9$ units.
A. 3
B. 4
C. 5
D. 6
29. Find the tangent of the acute angle between the lines $2 x$ $+y=3$ and $3 x-2 y=5$
A. $\quad-7 / 4$
B. $\quad 7 / 8$
C. $\quad 7 / 4$
D. $\quad 7 / 2$

From the Point P, the bearings of two points Q and R are $\mathrm{N} 67^{\circ} \mathrm{W}$ and $\mathrm{N} 23^{\circ} \mathrm{E}$ respectively. If the bearing of R from Q is $N 68^{\circ} \mathrm{E}$ and $\mathrm{PQ}=150 \mathrm{~m}$, calculate $P R$.
A. 120 m
B. 140 m
C. 150 m
D. 160 m
31.

In the figure above, PQRS is a circle with $\mathrm{ST} / / \mathrm{RQ}$. Find the value of x if $\mathrm{PT}=\mathrm{PS}$
A. $\quad 70^{\circ}$
B. $\quad 55^{\circ}$
C. $\quad 40^{0}$
D. $\quad 35^{\circ}$
32.

In the diagrams above, EFGH is a cyclic quadrilateral in which $\mathrm{EH} / / \mathrm{FG}$ and FH are chords. If $\angle \mathrm{FHG}=42^{\circ}$ and $\angle \mathrm{EFH}=34^{\circ}$, calculate $\angle \mathrm{HEG}$
A. $\quad 34^{\circ}$
B. $\quad 42^{\circ}$
C. $\quad 52^{0}$
D. $\quad 76^{0}$
33. If the maximum value of $y=1+h x-3 x^{2}$ is 13 , find h.
A. $\quad 13$
B. $\quad 12$
C. 11
D. 10
34. Evaluate $\int_{-2}^{1}(x-1)^{2}$
A. $\quad-3{ }^{1} / 3$
B. 7
C. $\quad 9$
D. 11
35. Evaluate $\int \pi / 4(x-1)^{2} d x$
A. $\quad \sqrt{ } 2+1$
B. $\sqrt{2}-1$
C. $\quad-\sqrt{ } 2-1$
D. $\quad 1-\sqrt{ } 2$
36. Find the area bounded by the curve $y=x(2-x)$, the x-axis, $x=0$ and $x=2$
A. $\quad 4$ sq units
B. $\quad 2$ squnits
C. $\quad 1 \frac{1}{2}$ sq units
D. $1 / 3$ sq units
37. If $y=3 x^{2}\left(x^{3}+1\right)^{1 / 2}$ find $d y / d x$
A. $6 x\left(x^{3}+1\right)+3 x^{2} / 2\left(x^{3}+1\right)^{1 / 2}$
B. $12 x\left(x^{3}+1\right)+3 x^{2} / 2\left(x^{3}+1\right)^{1 / 2}$
C. $\left(15 x^{4}+6 x\right) / 6 x^{2}\left(x^{3}+1\right)^{1 / 2}$
D. $12 x\left(x^{3}+1\right)+9 x^{4} / 2\left(x^{3}+1\right)^{1 / 2}$
38. Find the volume of solid generated when the area enclosed by $y=0, y=2 x$ and 3 is rotated about the $x-$ axis.
A. $\quad 81 \pi$ cubic units
B. 36π cubic units
C. 18π cubic units
D. $\quad 9 \pi$ cubic units
39. What is the derivative of $t^{2} \sin (3 t-5)$ with respects to the variable?
A. $6 t \cos (3 t-5)$
B. $2 \mathrm{dt} \sin (3 \mathrm{t}-5)-3 \mathrm{t}^{2} \cos (3 \mathrm{t}-5)$
C. $2 t \sin (3 t-5)+3 t^{2} \cos (3 t-5)$
D. $2 t \sin (3 t-5)+t^{2} \cos 3 t$
40. Find the value of x for which the function $y=x^{3}-x$ has a minimum value.
A. $\quad-\sqrt{ } 3$
B. $\quad-\sqrt{ } 3 / 2$
C. $\sqrt{3} / 3$
D. $\sqrt{ } 3$
41. Three boys play a game a luck in which their respective chances of wining are $1 / 2,1 / 3$ and $1 / 4$. What is the probability that one and only of the boys wins the game?
A. $\quad 1 / 24$
B. $\quad 1 / 12$
C. $11 / 24$
D. $23 / 24$
42. A number is selected at random from 0 to 20 . what is the probability that the number is an odd prime?
A. $\quad 8 / 21$
B. $\quad 1 / 3$
C. $2 / 7$
D. $5 / 21$
43. If ${ }^{6} \mathrm{C}_{\mathrm{r}} /{ }^{6} \mathrm{P} / \mathrm{r}=1 / 6$, find the value of r .
A. $\quad 1$
B. 3
C. 5
D. 6
44. If the standard deviation of the set of numbers $3,6, x$, 7,5 , is $\sqrt{2}$, find the least possible value of x.
A. 2
B. 3
C. 4
D. 6
45. How many two digit numbers can be formed from the digits $0,1,2$, if a digit can be repeated and no number may begin with 0
A. 4
B. $\quad 12$
C. 16
D. 20
46.

Mathematics 2000

1. Let $\mathrm{P}=\{1,2, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}\}$
$R=\{2,3, u, v, w, 5,6, y\}$
and $\mathrm{R}=(2,3,4, \mathrm{v}, \mathrm{x}, \mathrm{y})$

Determine $(\mathrm{P}-\mathrm{Q}) \cap \mathrm{R}$.
A. $\{1, x\}$
B. $\quad\{x, y\}$
C. $\{x\}$
D. ϕ
2. If the population of a town was 240000 in January 1998 and it increased by 2% each year, what would be the population of the town in January 2000?
A. 480000
B. 249696
C. 249600
D. 244800
3. If $2 \sqrt{ } 3-\sqrt{ } 2 / \sqrt{ } 3+2 \sqrt{ } 2=m+n \sqrt{ } 6$,

Find the values of m and n respectively
A.
$1,-2$
B. $\quad-2,1$

The grades of 36 students in a class test are as shown in the pie chart above. How many students had excellent?
A. 7
B. 8
47.

C. 9	9										
No of students	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1 1}$	$\mathbf{1 0}$	$\mathbf{1 6}$	$\mathbf{5 1}$	$\mathbf{4 0}$	$\mathbf{1 0}$	$\mathbf{2 5}$	$\mathbf{1 5}$	$\mathbf{2 0}$
Marks	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$

The marks scored by students in a test are given in the above. Find the median.
A. 7
B. 6
C. 5
D. 4
48. A student calculated the mean of 5 numbers as 45,3 . while rechecking his working, he discovered that his total was short by 20.5 . what is the correct mean of the 5 numbers?
A. $\quad 24.8$
B. $\quad 41.2$
C. $\quad 49.4$
D. 65.8
49. The sectorial allocations to various ministries in a state budget are as follows:
$\begin{array}{ll}\text { Agriculture } & \text {-\#25000000.00 } \\ \text { Education } & \text { - \#20 000 000 .00 } \\ \text { Women affairs } & \text {-\#35000000.00 } \\ \text { Commerce and } & \\ \text { Industries } & \text {-\#20 000 000.00 }\end{array}$
In a pie chart to represent this information the corresponding angle to agriculture is
A. $\quad 25^{0}$
B. $\quad 45^{\circ}$
C. $\quad 50^{\circ}$
D. 90°
50. The mean of four numbers is 5 and the mean deviation is 3. find the fourth number if the mean deviation of the first three numbers is 2 .
A. 6
B. $\quad 10$
C. 11
D. 17
C. $\quad-2 / 5,1$
D.
$2,3 / 5$
4. In a youth club with 94 members, 60 like modern music and 50 like like traditional music. The number of members who like both traditional and modern music is three times who do not like any type of music. How many members like only one type of music?
A. 8
B. 24
C. 62
D. 86
5. Evaluate $\frac{\left(2.813 \times 10^{-3}\right) \times 1.063}{5.637 \times 10^{-2}}$
reducing each number to two significant figures and leaving your answers in two significant figures.
A. 0.056
B. 0.055
C. 0.054
D. 0.54

A man wishes to keep some money in a savings deposit at 25% compound interest so that after 3 years he can buy a car for $\# 150,000$. how much does he need to deposit now?
A. \#112,000.50.
B. \#96,000.00
C. \#85,714.28
D. \#76,800.00
7. If $314_{10}-256_{7}=340_{x}$, find x
A.
B. $\quad 2^{\mathrm{n}-1}$
C. 4
D. $\quad 1 / 4$
8. Audu bought an article for \#50 000 and sold it to Femi at a loss of $x \%$. Femi later sold the article to Oche at a profit of 40%. If Femi made a profit of $\# 10,000$, find the value of x.
A. 60
B. 50
C. 40
D. 20
9. Simplify $3\left({ }^{2 n+1}\right)-4\left({ }^{2 n-1}\right) / 2\left({ }^{n+1)}-2^{n}\right.$
A. $\quad 2^{n+1}$
B. $\quad 2^{\mathrm{n}-1}$
C. 4
D. $\quad 1 / 4$
10. If $\mathrm{P} 344_{6}-23 \mathrm{P} 2_{6}=2 \mathrm{PP} 2_{6}$, find the value of digit P .
A. 2
B. 3
C. 4
D. 5
11. Evaluate $5^{-3 \log 52} \times 2^{2 \log 23}$
A. 8
B. $\quad 1 \frac{1}{8}$
C. $2 / 5$
D. $1 / 8$
12. A binary operation * is defined by a $\quad \mathrm{b}=\mathrm{a}^{\mathrm{b}}$. if $\mathrm{a} * 2$ $=2-\mathrm{a}$, find the possible values of a .
A. $\quad 1,-1$
B. $\quad 1,2$
C. $\quad 2,-2$
D. $\quad 1,-2$
13. The $3^{\text {rd }}$ term of an A. P. is $4 x-2 y$ and the $9^{\text {th }}$ term is $10 x-8 y$. find the common difference.
A. $19 x-17 y$
B. $8 \mathrm{x}-4 \mathrm{y}$
C. $\quad \mathrm{x}-\mathrm{y}$
D. 2 x
14. Find the inverse of p under the binary operation * by $\mathrm{p} * \mathrm{q}=\mathrm{p}+\mathrm{q}-\mathrm{pq}$, where p and q are real numbers and zero is the identity.
A. $\quad \mathrm{p}$
B. $p-1$
C. $\quad \mathrm{p} / \mathrm{p}-1$
D. $p / p+1$
15. A matrix $\left|\begin{array}{l}(a, b) \\ (a, b) \\ (c, d)\end{array}\right| \quad$ is such that $P^{T}=p$, where
P^{T} is the transpose of P , if $\mathrm{b}=1$, then P is
A.
$(0,1)$
B.
$(0,1)$
$(1,0)$
D.
$(-1,0)$
C. $(0,1)$
$(1,1)$
$(1,1)$
$(-1,0)$
16. Evaluate $(1 / 2-1 / 4+1 / 8-1 / 16+\ldots \ldots)-$.
A. $2 / 3$
B. 0
C. $-2 / 3$
D. -1
17. The solution of the simultaneous inequalities $2 \mathrm{x}-2$ $£ \mathrm{y}$ and $2 \mathrm{y} 2 £ \mathrm{x}$ is represent by

18. Find the values of t for which the determinant of the matrix ($\mathrm{t}-4 \quad 0 \quad 0 \quad)$
$\left.\begin{array}{lll}(-1 & t+t & 1\end{array}\right)$ is zero
A. $\quad 0,2,3$
B. $-4,2,3$
C. $-4,-2,-3$
D. $4,-2,3$
19. If $(x-1),(x+1)$ and (x-2) are factors of the polynomial $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}-1$, find $\mathrm{a}, \mathrm{b}, \mathrm{c}$, respectively
A.
$-1 / 2,1,1 / 2$
B. $\quad 1 / 2,1,1 / 2$
C. $\quad 1 / 2,1,-1 / 2$
D. $\quad 1 / 2,-1,1 / 2$
20. A trader realizes $10 x-x^{2}$ naira profit from the sale of x bags of corn. How many bags will give him the maximum profit?
A. 4
B. 5
C. 6
D. 7
21. Solve the inequality $2-x>x^{2}$
A. $\quad \mathrm{x}<-2$ or $\mathrm{x}>1$
B. $\quad \mathrm{x}>2$ or $\mathrm{x}<-1$
C. $\quad-1<x>2$
D. $\quad-2<x<1$
22. If a and b are the roots of the equation $3 x^{2}+5 x-2=$ 0 , find the value of $1 / \alpha+1 / \beta$
A. $\quad-5 / 2$
B. $-2 / 3$
C. $1 / 2$
D. $5 / 2$
23. Find the minimum value of the function $f(\theta)=2 / 3-$ $\cos \theta$ for $0 \leq \theta \leq 2 \pi$.
A. $\quad 1 / 2$
B. $2 / 3$
C. $\quad 1$
D. 2
24. A frustum of a pyramid with square base has its upper and lower sections as squares of sizes 2 m and 5 m respectively and the distance between them 6 m . find the height of the pyramid from which the frustum was obtained.
A. $\quad 8.0 \mathrm{~m}$
B. $\quad 8.4 \mathrm{~m}$
C. $\quad 9.0 \mathrm{~m}$
D. 10.0 m
25. $\quad \mathrm{P}$ is a point on one side of the straight line UV and P moves in the same direction as UV. If the straight line ST is on the locus of P and $\angle \mathrm{VUS}=50^{\circ}$, find \angle UST.
A. $\quad 310^{\circ}$
B. 130°
C. $\quad 80^{\circ}$
D. 50°
26. A ship sails a distance of 50 km in the direction S50E and then sails a distance of 50 km in the direction $\mathrm{N} 40^{\circ} \mathrm{E}$. find the bearing of the ship from its original position.
A. $\mathrm{S} 90^{\circ} \mathrm{E}$
B. $\quad \mathrm{N} 40^{\circ} \mathrm{E}$
C. $\quad \mathrm{S} 95^{\circ} \mathrm{E}$
D. $\quad \mathrm{N} 85^{\circ} \mathrm{E}$
27. An equilateral triangle of side $\sqrt{ } 3 \mathrm{~cm}$ is inscribed in a circle. Find the radius of the circle.
A. $2 / 3 \mathrm{~cm}$
B. $\quad 2 \mathrm{~cm}$
C. 1 cm
D. $\quad 3 \mathrm{~cm}$
28. $3 y=4 x-1$ and $K y=x+3$ are equations of two straight lines. If the two lines are perpendicular to each other, find K
A.
C.

In the diagram above, if $\angle \mathrm{RPS}=50^{\circ}, \angle \mathrm{RPQ}=30^{\circ}$ and $\mathrm{PQ}=\mathrm{QR}$, find the value of $\angle \mathrm{PRS}$
A.

In the diagram above, EFGH is a circle center O . FH is a diameter and GE is a chord which meets FH at right angle at the point N . if $\mathrm{NH}=8 \mathrm{~cm}$ and $\mathrm{EG}=24$ cm, calculate FH.
A. 16 cm
B. $\quad 20 \mathrm{~cm}$
C. 26 cm
D. $\quad 32 \mathrm{~cm}$
31. If P and Q are fixed points and X is a point which moves so that $X P=X Q$, the locus of X is
A. a straight line
B. acircle
C. the bisector $\angle \mathrm{PXQ}$
D. the perpendicular bisector of PQ
32. In a regular polygon, each interior angle doubles its corresponding exterior angle. Find the number of sides of the polygon.
A. 87
B. 6
C. 4
D. 3
33. A predator moves in a circle of radius $\sqrt{ } 2$ centre $(0$, 0), while a prey moves along the line $y=x$. if $0 \leq x \leq$ 2, at which point(s) will they meet?
A.
$(1,1)$ only
B.
$(1,1)$ and $(1,2)$
34.

If the diagram above is the graph of $y=x^{2}$, the shaded area is
A. 64 square units
B. $128 / 3$ square units
C. $64 / 3$ square units
D. 32 square units
35. Find the value of $\int \pi\left(\cos ^{2} \theta-1 / \sin ^{2} \theta\right) d \theta$
A. π
B. $\quad \pi /{ }_{0}$
C. $\quad-\pi / 0$
D. π
36. If $y=2 y \cos 2 x-\sin 2 x$, find $d y / d x$ when $x=e ̈ / 4$
A. $\quad \pi$
B. $\quad-\pi$
C. $\quad \pi / 2$
D. $\quad-\pi / 2$
37. A bowl is designed by revolving completely the area enclosed by $y=x^{2}-1, y=0, y=3$ and $x^{3} 0$ around the y-axis. What is the volume of this bowl?
A. $\quad 7 \pi$ cubic units.
B. $\quad 15 \pi / 2$ cubic units
C. 8π cubic units D. $17 \pi / 2$ cubic units.
38. If the volume of a hemisphere is increasing at a steady rate of $8 \pi \mathrm{~m}^{3} \mathrm{~s}^{-1}$, at what rate is its radius changing when it is 6 m ?
A. $\quad 2.50 \mathrm{~ms}-1$
B. $\quad 2.00 \mathrm{~ms}-1$
C. $\quad 0.25 \mathrm{~ms}-1$
D. $\quad 0.20 \mathrm{~ms}-1$
39. A function $f(x)$ passes through the origin and its first derivative is $3 x+2$. what is $f(x)$
A. $y=3 / 2 x^{2}+2 x$
B. $\quad y=3 / 2 x^{2}+x$
C. $y=3 x^{2}+x / 2$
D. $y=3 x^{2+2 x}$
40. The expression $a x^{2}+b x+c$ equals 5 at $x=1$. if its derivative is $2 x+1$, what are the values of a, b, c, respectively?
A.
1, 3, 1
B. $\quad 1,2,1$
C. $2,1,1$
D. $1,1,3$
41. X and Y are two events. The probability of X and Y is 0.7 and the probability of X is 0.4 . If X and Y are independent, find the probability of Y.
A. $\quad 0.30$
B. 0.50
C. 0.57
D. $\quad 1.80$
42. If the mean of the numbers $0, x+2,3 x+6$ and $4 x+$ 8 is 4 , find their mean deviation.
A. 0
B. 2
C. 3
D. 4
43. In how many ways can the word MATHEMATICS be arranged?
A. $11!/ 9!2$!
B. $\quad 11!/ 9!2!2$!
C. $11!/ 2!2!2$!
D. $11!/ 2!2$!
44.

No .	1	2	3	4	5	6
Frequency	30	43	54	40	41	32

A dice is rolled 240 times and the result depicted in the table above. If a pie chart is constructed to represent the data, the angle corresponding to 4 is
A. $\quad 10^{0}$
B. $\quad 16^{0}$
C. $\quad 40^{\circ}$
D. 60°
45. If $U=\{x: x$ is an integer and $\{1 \leq x \leq 20\}$
$E_{1}=\{x: x$ is a multiple of 3$\}$
$E_{2}=\{x: x$ is a multiple of 4$\}$
And an integer is picked at random from U, find the probability that it is not in E_{2}
A. $\quad 3 / 4$
B. $\quad 3 / 10$
C. $\quad 1 / 4$
D. $1 / 20$
46.

$\begin{array}{llllll}15.5 & 16.5 & 17.5 & 18.5 & 19.5 & 20.5\end{array}$
Age(in years)

The cumulative frequency curve above represents the ages of students in a school. Which are group do 70% of the students belong?
A. 15.5-18.5
B. $15.5-19.5$
C. $16.5-19.5$
D. $17.5-20.5$
47. The variance of $x, 2 x, 3 x 4 x$ and $5 x$ is
A. $\quad \mathrm{x} \sqrt{ } 2$
B. $\quad 2 x^{2}$
C. x^{2}
D. $3 x$
48. Find the sum of the range and the mode of the set of numbers $10,5,10,9,8,7,7,10,8,10,8,4,6,9,10$, $9,10,9,7,10,6,5$
A. 16
B. 14
C. 12
D. 10
49. In how many ways can a delegation of 3 be chosen from among 5 men and 3 women, if at least one man at least one woman must be included?
A. 15
B. 28
C. 30
D. 45
50.

Interval (years)	$10-12$	$13-15$	$16-18$	$19-20$	$21-23$
No . Of Pupils	6	14	15	10	5

The table above shows the frequency distribution of the ages (in years) of pupils in a certain secondary school. What percentage of the total number of pupils is over 15 years but less than 21 years?
A. 35%
B. 45%
C. 50%
D. 60%

Mathematics 2001

1. Find the principal which amounts to \#5,000 at simple interest in 5 years at 2% per annum
A. \#5000
B. \#4900
C. \#4800
D. \#4700
2. A car dealer bought a second-hand car for \#250,000.00 and spent \#70 000.00 refurbishing it. He then sold the car for \#400 000.00. what is the percentage gain?
A. 20%
B. 25%
C. 32%
D. 60%
3. Evaluate $21.05347-1.6324 \times 0.43$, to 3 decimal places.
A. 20.351
B. 20.352
C. 20.980
D. 20.981
4. Evaluate $\left.(0.14)^{2} \times 0.275\right) / 7(0.02)$ correct to 3 decimal places
A. 0.033
B. 0.039
C. 0.308
D. 0.358
5. Given that $p=1+\sqrt{ } 2$ and $q=1-\sqrt{ } 2$, evaluate $\left(p^{2}-\right.$ $q^{2} / 2 p q$
A. $-2(2+\sqrt{ } 2)$
B. $\quad 2(2+\sqrt{ } 2)$
C. $\quad-2 \sqrt{ } 2$
D. $\quad 2 \sqrt{ } 2$
6. If $y / 2=x$, evaluate
$\left(x^{3} / y^{3}+1 / 2\right)+\left(1 / 2-x^{2} / y^{2}\right)$
A. $5 / 16$
B. $\quad 5 / 8$
C. $5 / 4$
D. $5 / 2$
7. \quad Simplify $\left(3 \sqrt{ } 64 a^{3}\right)^{-3}$
A. 8 a
B. 4 a
C. $1 / 4 \mathrm{a}$
D. $1 / 4 \mathrm{a}$
8. Factorize $4 x^{2}-9 y^{2}+20 x+25$
A. $\quad(2 x-3 y)(2 x+3 y)$ B. $\quad(2 x+5)(2 x-9 y+5)$
C. $\quad(2 x-3 y+5)(2 x-3 y-5)$
D. $\quad(2 x-3 y)(2 x+3 y+5)$
9. If tow graphs $y=\mathrm{px}^{2}$ and $\mathrm{y}=2 \mathrm{x}^{2}-1$ intersect at $\mathrm{x}=$ 2 , find the value of p in terms of q
A. $\quad(7+q) / 8$
B. $\quad(8-q) / 2$
C. $\quad(q-8) / 7$
D. $\quad 7 /(q-1)$
10. Solve the equations: $m^{2}+n^{2}=29 ; m+n=7$
A.
$(5,2)$ and $(5,3)$
B.
$(5,3)$ and $(3,5)$
C.
$(2,3)$ and $(3,5)$
D.
$(2,5)$ and $(5,2)$
11. Divide $\mathrm{a}^{3 \mathrm{x}}-26 \mathrm{a}^{2 \mathrm{x}}+156 \mathrm{a}^{\mathrm{x}}-216$ by
$a^{2 x}-24 a^{x}+108$
A. $\quad a^{x}-18$
B. $a^{x}-6$
C. $a^{x}-2$
D. $\quad a^{x}+2$
12. Find the integral values of x and y satisfying the inequality $3 y+5 x £ 15$, given that $y>0, y<3$ and $x>0$.
A.
$(1,1),(2,1),(1,3) \quad B$
$(1,1),(1,2),(1,3)$
C.
$(1,1),(1,2),(2,1)$
$(1,1),(3,1),(2,2)$
13.

Triangle SPT is the solution of the linear inequalities
A. $2 y-x-2 \leq 0, y+2 x+2 \leq 0, \geq 0, x \leq 0$
B. $2 y-x-2 \leq 0, y+2 x+2 \leq 0, \leq 0$
C. $2 y-x-2 \leq 0, y+2 x+2 \leq 0, \leq 0, x \leq-1$
D. $-2 y<x \leq 2 \leq 0, y+2 x+2 \leq 0, \leq 0$
14.. The sixth term of an arithmetic progression is half of its twelfth term. The first term is equal to
A. half of the common difference
B. double of the common difference
C. the common difference D .
D. zero
15. A man saves \#100.00 in his first year of work and each year saves \#20.00 more than in the preceding year. In how many years will he save \#580.00
A. 20 years
B. 29 years
C. 58 years
D. 100 years
16. An operation $*$ is defined on the set of real numbers by $a * b=a+b+1$. if the identity elements is -1 , find the inverse of the element 2 under.
A. -4
B. -2
C. 0
D. 4

17

\otimes	k	l	\boldsymbol{m}
\boldsymbol{k}	\boldsymbol{l}	\boldsymbol{m}	\boldsymbol{k}
\boldsymbol{l}	\boldsymbol{m}	\boldsymbol{k}	\boldsymbol{l}
\boldsymbol{m}	\boldsymbol{k}	\boldsymbol{l}	\boldsymbol{m}

The identity element with respect to the multiplication shown in the table above is
A. k
B. $\quad 1$
C. m
D. $\quad o$
18. Given that matrix $\mathrm{k}=\left\{\begin{array}{l}(2, \\ (3,\end{array}\right)$ 4) the matrix
$\mathrm{k}^{2}+\mathrm{k}+1$, where I is the 2 x 2 identity matrix, is
A. $(9,8)$
$(22,23)$
B. $\quad(10,7)$
$(21,24)$
C. $(7,2)$
D. $(6,3)$
$(12,21)$
$(13,20)$
19. Evaluate

$$
\left|\begin{array}{rrr}
-1 & -1 & -1 \\
3 & 1 & 1 \\
1 & 2 & 1
\end{array}\right|
$$

A. 4
B. $\quad-2$
C. -4
D. -12

20
If $P=\left|\begin{array}{rrr}3 & -3 & 4 \\ 5 & 0 & 6 \\ 1 & 2 & 1\end{array}\right|$ then $-2 p$ is
A. $\left|\begin{array}{rr}-6, & 4, \\ 5, & -8 \\ 7, & 5, \\ \hline\end{array}\right|$
B $\left|\begin{array}{rrr}-6, & 4, & -8 \\ -10, & 0, & 6 \\ -14, & 5, & -1\end{array}\right|$
C. $\left|\begin{array}{lll}-6, & -4, & 2 \\ -10, & -2, & -12 \\ -14, & 10, & 2\end{array}\right|$
D $\left|\begin{array}{lll}-6, & 4, & -8 \\ -10, & 0, & -12 \\ -14, & 40 & 2\end{array}\right|$
21. Find the number of sides of a regular polygon whose interior angle is twice the exterior angle
A. 2
B. 3
C. 6
D. 8

In the figure above, PQR is a straight line segment, $\mathrm{PQ}=\mathrm{QT}$. Triangle PQT is an isosceles triangle, < SRQ is 75° and $<\mathrm{QPT}=25^{\circ}$. calculate the value of $<$ RST.
A. $\quad 25^{0}$
B. $\quad 45^{0}$
C. $\quad 50^{0}$
D. 55°
23. A cylindrical tank has a capacity of $3080 \mathrm{~m}^{3}$. what is the depth of the tank if the diameter of its base is 14 m ?
A. 20 m
B. 22 m
C. 23 m
D. 25 m
24. A sector of a circle of radius 7.2 cm which subtends an angle 300° at the centre is used to form a cone. What is the radius of the base of the cone?
A. 6 cm
B. 7 cm
C. $\quad 8 \mathrm{~cm}$
D. 9 cm
25. The chord ST of a circle is equal to the radius, r of the circle. Find the length of arc ST.
A. $\quad \pi \mathrm{r} / 2$
B. $\quad \pi \mathrm{r} / 3$
C. $\pi r / 6$
D. $\pi r / 12$
26. A point P moves such that it is equidistant from the points Q and R . find QR when $\mathrm{PR}=8 \mathrm{~cm}$ and $<\mathrm{PRQ}$ $=30^{\circ}$
A. 4 cm
B. $\quad 4 \sqrt{3} \mathrm{~cm}$
C. 8 cm
D. $\quad 8 \sqrt{3} \mathrm{~cm}$
27. Find the locus of a point which moves such that its distance from the line $y=4$ is a constant, k.
A. $y=4+k$
B. $\quad \mathrm{y}=\mathrm{k}-4$
C. $\mathrm{y}=\mathrm{k} \pm 4$
D. $y=4 \pm k$
28. A straight line makes an angle of 30° with the positive x -axis and cuts the y -axis at $\mathrm{y}=5$. find the equation of the straight line.
A. $\quad \sqrt{3 y}=x+5 y \sqrt{ } 3$
B. $\quad \sqrt{3} y=-x+5 \sqrt{3}$
C. $y=x+5$
D. $y=1 / 10 x+5$
29. $P(-6,1)$ and $Q(6,6)$ are the two ends of the diameter of a given circle. Calculate the radius
A. $\quad 3.5$ units
B. $\quad 6.5$ units
C. $\quad 7.0$ units
D. $\quad 13.0$ units
30. Find the value of p if the line joining ($p, 4$) and ($6,-$ $2)$ is perpendicular to the line joining $(2, p)$ and $(-1$, 3)
A. 0
B. 3
C. 4
D. 6
31. The bearing of P and Q from a common point N are 020° and 300° respectively. If P and Q are also equidistant from N, find the bearing of P from Q.
A. $\quad 320^{\circ}$
B. 280°
C. $\quad 070^{\circ}$
D. 040°
32.

Find the value of q in the diagram above.
A. $\quad 30^{0}$
B. $\quad 60^{\circ}$
C. 100°
D. 120°
33. Differentiate $(2 x+5)^{2}(x-4)$ with respect to x
A. $\quad(2 x+5)(6 x-11)$
B. $(2 x+5)(2 x-13)$
C. $\quad 4(2 x+5)(x-4)$
D. $\quad 4(2 x+5)(4 x-3)$
34. If $y=x \sin x$, find $d y / d x$ when $x=\pi / 2$
A. $\quad \pi / 2$
B. $\quad 1$
C. $\quad-1$
D. $\pi /-2$
35. If the gradient of the curve
$\mathrm{y}=2 \mathrm{kx}^{2}+\mathrm{x}+1$ at $\mathrm{x}=1$ find k
A. $\quad 1$
B. 2
C. 3
D. 4
36. Find the rate of change of the volume V of a sphere with respect to its radius r when $r=1$
A. $\quad 4 \pi$
B. $\quad 8 \pi$
C. $\quad 12 \pi$
D. 24π
37. Find the dimensions of the rectangle of greatest area which has a fixed perimeter p .
A. Square of sides p/4 B.
Square of sides $\mathrm{p} / 2$
C. Square of sides p D.
Square of sides 2p
38. Evaluate $\int 2(2 x-3)^{2 / 3} \mathrm{dx}$
A. $\quad 2 \mathrm{x}-3+\mathrm{k}$
B. $\quad 2(2 x-3)+k$
C. $\quad 6 / 5(2 x-3)^{5 / 3}+k$
D. $3 / 5(2 x-3)^{5 / 3}+k$
39. Find the area bounded by the curves
$y=4-x^{2}$
A. $\quad 10 \frac{1}{3}$ sq. units
B. $\quad 10^{2} / 3$ sq. units
C. $\quad 201 / 3$ sq. units
D. $\quad 20^{2} /{ }_{3}$ sq. units

The bar chart above shows different colours of cars passing a particular point of a certain street in two minutes. What fraction of the total number of cars is yellow?
A. $4 / 15$
B. $1 / 5$
C. $3 / 25$
D. $2 / 25$

The histogram above shows the distribution of passengers in taxis of a certain motor park. How many taxis have more than 4 passenger?
A. 14
B. 15
C. 16
D. 17

Using the table below to answer questions 42 and 43

Score	4	7	8	11	13	8
Frequency	3	5	2	7	2	1

42. Find the square of the mode
A. 25
B. 49
C. 64
D. 121
43. The mean score is
A. $\quad 11.0$
B. $\quad 9.5$
C. 8.7
D. $\quad 7.0$
44. Find the range of $1 / 6,1 / 3,3 / 2,2 / 3,8 / 9$ and $4 / 3$
A. $\quad 4 / 3$
B. $7 / 6$
C. $5 / 6$
D. $3 / 4$
45. Find the variance of $2,6,8,6,2$ and 6
A. $\sqrt{5}$
B. $\sqrt{6}$
C. 5
D. 6
46.

The graph above shows the cumulative frequency of the distribution of masses of fertilizer for 48 workers in one institution. Which of the following gives the interquartile range?
A. $\quad \mathrm{Q}_{3}-\mathrm{Q}_{1}$
B. $Q_{3}-Q_{2}$
C. $Q_{2}-Q_{1}$
D. $\quad 1 / 2\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right)$
47. Find the number of ways of selecting 8 subjects from 12 subjects for an examination.
A. 498
B.
496
C. 495
D. 490
48. If ${ }^{6} \mathrm{P}_{\mathrm{r}}=6$, find the value of ${ }^{6} \mathrm{P}_{\mathrm{r}+1}$
A. $\quad 15$
B. 30
C. 33
D. 35
49.

Colour	Blue	Black	Yellow	White	Brown
No . of beads	1	2	4	5	3

The distribution of colors of beads in a bowl is given above. What is the probability that a bead selected at random will be blue or white?
A. $1 / 15$
B. $1 / 3$
C. $2 / 5$
D. $\quad 7 / 15$
50. Teams P and Q are involved in a game of football. What is the probability that the game ends in a draw?
A. $\quad 1 / 4$
B. $\quad 1 / 3$
C. $\quad 1 / 2$
D. $2 / 3$

Mathematics 2002

1. A trader bought goats for \#4 000 each. He sold them for \#180 000 at a loss of 25%. How many goats did he buy?
A. 36
B. 45
C. 50
D. 60
2. \quad Simplify $(\sqrt{ } 0.7+\sqrt{ } 70)^{2}$
A. $\quad 217.7$
B. $\quad 168.7$
C. 84.7
D. $\quad 70.7$
3. Evaluate
($0.21 \times 0.072 \times 0.0054) /(0.006 \times 1.68 \times 0.063)$
correct to four significant figures.
A. 0.1286
B. 0.1285
C. 0.01286
D. 0.01285
4. In a school, 220 students offer Biology or Mathematics or both. 125 offer Biology and 110 Mathematics. How many offer Biology but not Mathematics?
A. 125
B. 110
C. 95
D. 80
5. Simplify $52.4-5.7-3.45-1.75$
A. $\quad 42.2$
B. $\quad 42.1$
C. $\quad 41.5$
D. $\quad 41.4$
6. Without using tables, evaluate
$(343)^{1 / 3} \mathrm{x}(0.14)^{-1} \mathrm{x}(25)^{1 / 2}$
A. 7
B. 8
C. 10
D. 12
7.

In the diagram below are two concentric circles of radii r and R respectively with centre O. if $r=2 / 5 R$, express the area of the shaded portion in terms of π and R.
A. $\quad{ }_{2 /} /{ }_{25} \pi \mathrm{R}^{2}$
B. $\quad 5 / 9 \pi R^{2}$
C. $\quad{ }_{21}^{25} \pi \mathrm{R}^{2}$
D $\quad{ }_{21} / 23 \pi \mathrm{R}^{2}$
8. Find the value of $\&$ if the line $2 y-\& x+4=0$ is perpendicular to the line $y+1 /{ }_{4} \mathrm{x}-7=$
0
A. -8
B. -4
C. 4
D. 8
9. A bucket is 12 cm in diameter at the top, 8 cm in diameter at the bottom and 4 cm deep. Calculates its volume.
A. $\quad 144 \pi \mathrm{~cm}^{3}$
B. $\quad 304 \pi \mathrm{~cm}^{3} / 3$
C. $\quad 72 \pi \mathrm{~cm}^{3}$
D. $128 \pi \mathrm{~cm}^{3} /$
10.

In the diagram below, XZ is the diameter of the circle XYZW , with centre O and radius $15 / 2 \mathrm{~cm}$. If $X Y=$ 12 cm , find the area of the triangle $X Y Z$.
A. $\quad 75 \mathrm{~cm}^{2}$
B. $\quad 54 \mathrm{~cm}^{2}$
C. $\quad 45 \mathrm{~cm}^{2}$
D. $\quad 27 \mathrm{~cm}^{2}$
11. Find the coordinate of the midpoint of x and y intercepts of the line $2 y=4 x-8$
A. $(-1,-2)$
B. $(1,2)$
C. $(2,0)$
D. $(1,-2)$
12. A chord of a circle subtends an angle of 120° at the centre of a circle of diameter $4 O ̈ 3 \mathrm{~cm}$. Calculate the area of the major sector.
A. $\quad 32 \pi \mathrm{~cm}^{2}$
B. $\quad 16 \pi \mathrm{~cm}^{2}$
C. $\quad 8 \pi \mathrm{~cm}^{2}$
D. $\quad 4 \pi \mathrm{~cm}^{2}$
13. If $\tan \mathrm{q}=4 / 3$, calculate $\sin ^{2} \theta-\cos ^{2} \theta$.
A. $\quad 7 / 25$
B. $9 / 25$
C. $16 / 25$
SD. $24 / 25$
14.
4.

In the diagram above, PST is a straight line, $\mathrm{PQ}=$ $\mathrm{QS}=\mathrm{RS}$. If $<\mathrm{RSRT}=72^{\circ}$, find x .
A. $\quad 72^{0}$
B. $\quad 36^{0}$
C. $\quad 24^{0}$
D. $\quad 18^{0}$
15. The locus of a point P which is equidistant from two given points S and T is
A. a perpendicular to ST
B. a line parallel to ST
C. the angle bisector of PS and ST
D. the perpendicular bisector ST
16. A solid hemisphere has radius 7 cm . Find the total surface area.
A. $\quad 462 \mathrm{~cm}^{2}$
B. $400 \mathrm{~cm}^{2}$
C. $308 \mathrm{~cm}^{2}$
D. $\quad 66 \mathrm{~cm}^{2}$
17.

The angle PGR below is
A. a scalene triangle
B. an isosceles triangle
C. an equilateral triangle
D. an obtuse - angled triangle
18. The sum of the interior angles of a polygon is 20 right angles. How many sides does the polygon have?
A. 10
B. $\quad 12$
C. 20
D. 40
19. Find the equation of the set of points which are equidistant from the parallel lines $x=1$ and $x=7$
A. $y=4$
B. $y=3$
C. $\quad \mathrm{x}=3$
D. $\quad x=4$
20.

In the diagram below, a cylinder is surrounded by a hemispherical bowl. Calculate the volume of the solid.
A. $216 \pi \mathrm{~cm}^{3}$
B. $\quad 198 \pi \mathrm{~cm}^{3}$
C. $180 \pi \mathrm{~cm}^{3}$
D. $\quad 162 \pi \mathrm{~cm}^{3}$
21. A hunter 1.6 m tall, views a bird on top of a tree at an angle of 45°. If the distance between the hunter and the tree is 10.4 m , find the height of the tree.
A. $\quad 8.8 \mathrm{~m}$
B. $\quad 9.0 \mathrm{~m}$
C. $\quad 10.4 \mathrm{~m}$
D. $\quad 12.0 \mathrm{~m}$
22. The mean of a set of six numbers is 60 . if the mean of the first five is 50 , Find the sixth number in the set.
A. $\quad 110$
B. 105
C. 100
D. 95
23. The range of the data $\mathrm{k}+2, \mathrm{k}-3, \mathrm{k}+4, \mathrm{k}-2, \mathrm{k}, \mathrm{k}-5$, $\mathrm{k}+3, \mathrm{k}-1$ and $\mathrm{k}+6$ is.
A. 6
B. 8
C. 10
D. 11
24.

No . of days	1	2	3	4	5	6
No . of students	20	x	50	40	$2 x$	60

The distribution above shows the number of days a group of 260 students were absent from school in a particular term. How many students were absent for at least four days in the term?
A. 40
B. 120
C. 160
D. 210
25.

The venn diagram below shows the number of students offering Music and History in a class of 80 students. If a student is picked at random from the class, what is the probability that he offers Music only?
A. 0.13
B. 0.25
C. 0.38
D. 0.50
26. Find the mean of the data $7,-3,4,-2,5,-9,4,8,-6,12$
A. 1
B. 2
C. 3
D. 4
27. The probability of a student passing any examination is $2 / 3$. if the student takes three examination, what is the probability that he will not pass any of them?
A. $\quad 1 / 27$
B. $8 / 27$
C. $\quad 4 / 9$
D. $2 / 3$
28. How many three-digit numbers can be formed from 32564 without digit being repeated?
A. 10
B. 20
C. 60
D. 120
29. The acres for rice, principle, cassava, cocoa and palm oil, in a certain district are given respectively as $2,5,3$, 11 and 9 . what is the angle of the sector for cassava in a pie chart?
A. $\quad 36^{0}$
B. $\quad 60^{\circ}$
C. $\quad 108^{0}$
D. 180°
30. Calculate the mean deviation of the set of numbers 7,3,14,9,7 and 8
A. $\quad 2^{1 / 2}$
B. $\quad 2 \frac{1}{3}$
C. $\quad 2 \frac{1}{6}$
D. $\quad 1 \frac{1}{6}$
31. Find the maximum value of y in the equation

$$
y=1-2 x-3 x^{2}
$$

A. $5 / 3$
B. $4 / 3$
C. $5 / 4$
D. $\quad 3 / 4$
32. If the $9^{\text {th }}$ term of an A . P is five times the $5^{\text {th }}$ term, find the relationship between a and d.
A. $\quad a+2 d=0$
B. $\quad a+3 d=0$
C. $\quad 3 \mathrm{a}+5 \mathrm{~d}=0$
D. $\quad 2 a+d=0$
33. The time taken to do a piece of work is inversely proportional to the number of men employed. If it takes 45 men to do a piece of work in 5 days, how long will take 25 men?
A. 5 days
B. $\quad 9$ days
C. 12 days
D. 15 days
34. The binary operation is defined on the set of integers p and q by $\mathrm{p}^{*} \mathrm{q}=\mathrm{pq}+\mathrm{p}+\mathrm{q}$. find $2(3 * 4)$
A. 19
B. 38
C. 59
D. 67
35. If -2 is the solution of the equation $2 x+1-3 c=2 c$ $+3 x-7$, find the value of c.
A. $\quad 1$
B. 2
C. 3
D. 4
36. If $\mathrm{N}=\left|\begin{array}{ccc}3 & 5 & -4 \\ 6 & -3 & -5 \\ - & 2 & 1,\end{array}\right| \quad$ find $/ \mathrm{N} /$
A. 91
B. 65
C. 23
D. 17
37. Use the graph below to find the values of p and q if $\mathrm{px}+\mathrm{qy}<4$

A. $\quad \mathrm{p}=1, \mathrm{q}=2$
B. $\quad \mathrm{p}=2, \mathrm{q}=1$
C. $p=-1, q=2$
D. $\quad \mathrm{p}=2, \mathrm{q}=-1$
38. The inverse of the function $f(x)=3 x+4$ is
A. $\quad 1 / 3(x+4)$
B. $\quad 1 / 4(x+3)$
C. $\quad 1 / 5(\mathrm{x}-5)$
D. $1 / 3(x-4)$
39. Solve for x in the equation
$x^{3}-5 x^{2}-x+5=0$
A. $\quad 1,1$ or 5
B. $-1,1$ or -5
C. $\quad 1,1$ or -5
D. $1,-1$ or 5
40. If $\left.\mathrm{P}=\left\lvert\, \begin{array}{ll}(2, & 1\end{array}\right.\right) \mid$ and I is a 2×2 unit matrix, evaluate $p^{2}-2 p+41$
A. $\left|\begin{array}{l}(2,1) \\ (4,1)\end{array}\right|$

B $\left|\begin{array}{l}(1,0) \\ (0,1)\end{array}\right|$
C. $\left.\left\lvert\, \begin{array}{c}(-3,0) \\ (0\end{array}-3\right.\right) \mid$
D. $\left|\begin{array}{l}(9,4) \\ (12,1)\end{array}\right|$
41. Find the range of values of x for which $x+2 / 4-2 x-3 / 3<4$
A. $\quad x>-3$
B. $x<4$
C. $\quad x>-6$
D. $x<8$
42. If x varies directly as \sqrt{n} and $x=9$ when $n=9$, find x when $\mathrm{n}=17 / 9$
A. 27
B. $\sqrt{17}$
C. 4
D. $\sqrt{3}$
43. The sum of infinity of the series
$1+1 / 3+1 / 9+1 / 27+\ldots \ldots \ldots \ldots \ldots$ is
A. $3 / 2$
B. $\quad 5 / 2$
C. $10 / 3$
D. $11 / 3$
44. Make r the subject of the formula
$\mathrm{x} / \mathrm{r}+\mathrm{a}=\mathrm{a} / \mathrm{r}$
A. $\quad a /(x-a)$
B. $\quad(a / x+a$
C. $\quad a^{2} /(x-a)$
D. $\quad a^{2} /(x+a)$
45. If $y=x^{2}-1 / x$, find $d y / d x$
A. $\quad 2 \mathrm{x}+\mathrm{x}^{2}$
B. $\quad 2 x-x^{2}$
C. $\quad 2 x-1 / x^{2}$
D. $2 x-1 / x^{2}$
46. Evaluate $\int \sin 3 x d x$
A. $\quad-2 / 3 \cos 3 x+c$
B. $\quad-1 / 3 \cos 3 x+c$
C. $\quad 1 / 3 \cos 3 x+c$
D. $\quad 2 / 3 \cos 3 x+c$
47. A circle with a radius 5 cm has its radius increasing at the rate of $0.2 \mathrm{cms}-1$. what will be the corresponding increase in the area?
A. $\quad 5 \mathrm{p}$
B. $\quad 4 \mathrm{p}$
C. $2 p$
D. p
48. If $d y / d x=2 x-3$ and $y=3$ when $x=0$, find y in terms of x.
A. $\quad x^{2}-3 x$
B. $\quad x^{2}-3 x+3$
C. $\quad 2 x^{2}-3 x$
D. $\quad x^{2}-3 x-3$
49. Find the derivative of $y=\sin ^{2}(5 x)$ with respect to x
A. $\quad 2 \sin 5 x \cos 5 x$
B. $\quad 5 \sin 5 x \cos 5 x$
C. $\quad 10 \sin 5 x \cos 5 x$ D. $\quad 15 \sin 5 x \cos 5 x$
50. The slope of the tangent to the curve $y=3 x^{2}-2 x+5$ at the point $(1,6)$ is
A. $\quad 1$
B. 4
C. 5
D. 61 .

Mathematics 2003

1. Simplify $1-\left(2 \frac{1}{3} \times 1 / 4\right)+3 / 5$
A. $\quad-2^{31}{ }_{60}$
B. $\quad-2^{7} /{ }_{15}$
C. $\quad-19{ }_{60}$
D. $\quad-1 \frac{1}{15}$
2. A cinema hall contains a certain number of people. If $22^{1} / 2 \%$ are children, $47 \frac{1}{2} \%$ are men and 84 are women, find the number of men in the hall.
A. 133
B. 113
C. 63
D. 84
3. Simplify $213_{4} \times 23_{4}$
A. $\quad 13211_{4}$
B. $\quad 10311_{4}$
C. 10321_{4}
D. 12231_{4}
4.

A woman buys 270 oranges for \# 1800.00 and sells at 5 for \#40.00. what is her profit?
A. \#630.00
B. \#360.00
C. \#1620.00
D. \#2160.00
5. \quad Simplify $\frac{(\sqrt{ } 98-\sqrt{ } 50)}{\sqrt{32}}$
A. $\quad 1 / 2$
B. $1 / 4$
C. 1
D. 3
6. The sum of four numbers is 1214_{5}. what is the average expressed in base five?
A. 411
B. 401
C. 141
D. 114
7. Evaluate $\log _{\sqrt{2} 2} 4+\log _{1 / 2} 16-\log _{4} 32$
A. $\quad-2.5$
B. 5.5
C. $\quad-5.5$
D. $\quad 2.5$
8. Given:
$\mathrm{U}=\{$ Even numbers between 0 and 30$\}$
$P=\{$ Multiples of 6 between 0 and 30$\}$
$Q=\{$ Multiples of 4 between 0 and 30$\}$

Find (PUQ) ${ }^{\text {c }}$.
A. $\{0,2,6,22,26\} \quad$ B
$\{2,4,14,18,26\}$
C. $\{2,10,14,22,26\}$ D.
$\{0,10,14,22,26\}$
9. In a class of 40 students, 32 offer Mathematics, 24 offer Physics and 4 offer neither Mathematics nor Physics. How many offer both Mathematics and Physics?
A. 16
B. 4
C. 20
D. 8
10. Find $(1 / 0.06 \div 1 / 0.042)^{-1}$, correct to two decimal places
A. $\quad 4.42$
B. $\quad 3.14$
C. $\quad 1.53$
D. $\quad 1.43$
11. If $9^{2 x-1} / 27^{x+1}=1$, find the value of x.
A. 2
B. 8
C. 5
D. 3
12. Factorize completely
$4 a b x-2 a x y-12 b^{2} x+6 b x y$
A. $\quad 2 x(3 b-a)(2 b-y)$
B. $\quad 2 x(a-3 b)(b-2 y)$
C. $\quad 2 x(2 b-a)(3 b-y) \quad$ D. $\quad 2 x(a-3 b)(2 b-y)$
13. The sum of the first n terms of an arithmetic progression is 252 . if the first term is -16 and the last term is 72 , find the number of terms in the series.
A. 7
B. $\quad 9$
C. 6
D. 8
14. The graphs of the function $y=x^{2}+4$ and a straight line $P Q$ are drawn to solve the equation $x^{2}-3 x+2=$ 0 . what is the equation of PQ ?
A. $y=3 x+2$
B. $\quad y=3 x-4$
C. $y=3 x+4$
D. $\quad y=3 x-2$
15. A matrix P has an inverse $\mathrm{P}^{-1}=(1-3)$

$$
(0,1) \text { Find } P \text {. }
$$

A. (13)
B $\quad(1-3)$
(01)
C. $\quad\left(\begin{array}{ll}1 & 3\end{array}\right)$
D. (-13)
(0-1)
16. Find the values of x and y respectively if $3 x-5 y+5$ $=0$ and $4 x-7 y+8=0$
A. $-4,-5$
B. $-5,-4$
C. 5,4
D. 4,5
17. If $\left|\begin{array}{c}(x, 2) \\ (4 x, 1)\end{array}\right|=\left|\begin{array}{l}(3,3 x) \\ (4,-5)\end{array}\right|$ find the value of x
C. 2
D. 5
18. Find the range of values of x satisfying the inequalities $5+\mathrm{x} \leq 8$ and $13+{ }^{3} 7$.
A. $-6 \leq x \leq 3$
B. $-6 \leq x \leq-3$
C. $\quad 3 \leq x \leq 6$
D. $-3 \leq x \leq 3$
19. x varies directly as the product of U and V and inversely as their sum. If $x=3$ when $U=3$ and $V=$ 1 , what is the value of x if $U=3$ and $V=3$?
A. 4
B. $\quad 9$
C. 6
D. 3

Triangle OPQ above is the solution of the inequalities.
A. $\quad \mathrm{x}-1 \leq 0, \mathrm{y}+\mathrm{x} \leq 0, \mathrm{y},-\mathrm{x} \leq 0$
B. $x+1 \geq 0, y+x \leq 0, y,-x \geq 0$
C. $y+x \leq 0, y-x \geq 0, x-1 \geq 0$
D. $x-1 \leq 0, y-x \geq 0, y+x \geq 0$
21. Three consecutive terms of a geometric progression are given as $n-2$, n and $n+3$. find the common ratio.
A. $\quad 2 / 3$
B. $3 / 2$
C. $1 / 2$
D. $\quad 1 / 4$
22. The length a person can jump is inversely proportional to his weigth. If a 20 kg person can jump 1.5 m , find the constant of proportionality.
A. 30
B. 60
C. 15
D. 20
23.
23.

In the diagram above, O is the centre of the circle, POM is a diameter and $\angle \mathrm{MNQ}=42^{\circ}$. calculate $\angle \mathrm{QMP}$.
A. 138°
B. 132^{0}
C. $\quad 42^{0}$
D. 48°
24. The locus of a point P which moves on one side only of a straight line $X Y$ so that $\angle X P Y=90^{\circ}$ is.
A. the perpendicular bisector of XY
B. a circle C. a semicircle
D. an arc of a circle through X, Y
25.

In the diagram above, PQ is parallel to RS . What is the value of $\alpha+\beta+y$?
A. $\quad 180^{\circ}$
B. $\quad 90^{\circ}$
C. $\quad 200^{0}$
D. 360°
26. Whicch of the following is the graph of $\sin \theta$ for

$$
\frac{-\pi}{2} \leq 0 \leq \frac{3 \pi}{2}
$$

A.

B.

C.

D.

27.

In the diagram above, PQR is a straight line and PS is a tangent to the circle QRS with $/ \mathrm{PS} /=\angle / \mathrm{SR} /$ and $\mathrm{SPR}=40^{\circ}$. find $\angle \mathrm{PSQ}$.
A. $\quad 20^{\circ}$
B. $\quad 10^{0}$
C. $\quad 40^{\circ}$
D. $\quad 30^{\circ}$
28. If $\pi /{ }_{2} \leq 2 \pi$, find the maximum value of $f(\theta)=4 / 6+2$ $\cos \theta$
A. $\quad 1$
B. $1 / 2$
C. 4
D. $\quad 2 / 3$
29. An aeroplane flies due north from airports P to Q and then flies due east to R. if Q is equidistant from P and R, find the bearing of P and R.
A. 270°
B. 090°
C. $\quad 135^{\circ}$
D. 225°
30. Find the value of p, if the line of which passes through $(-1,-p)$ and $(-2,2)$ is parallel to the line $2 y+8 x-17$ $=0$.
A. $-2 / 7$
B. $7 / 6$
C. $\quad-6 / 7$
D. $6 / 7$
31. Find the equation of the locus of a point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ which is equidistant form $\mathrm{Q}(0,0)$ and $\mathrm{R}(2,1)$.
A. $\quad 2 x+y=5$
B. $\quad 2 x+2 y=5$
C. $\quad 4 x+2 y=5$
D. $4 x-2 y=5$
32. An arc of a circle subtends an angle of 30° on the circumference of a circle of a radius 21 cm . Find the length of the arc
A. 66 cm
B. $\quad 44 \mathrm{~cm}$
C. $\quad 22 \mathrm{~cm}$
D. 11 cm
33. A trapezium has two parallel sides of length 5 cm and 9 cm . If the area is $121 \mathrm{~cm}^{2}$, find the distance between the parallel sides.
A. $\quad 7 \mathrm{~cm}$
B. 3 cm
C. 4 cm
D. 6 cm
34.

XYZ is a circle centre O and radius 7 cm . Find the area of the shaded region.
A. $\quad 14 \mathrm{~cm}^{2}$
B. $\quad 38 \mathrm{~cm}^{2}$
C. $\quad 77 \mathrm{~cm}^{2}$
D. $84 \mathrm{~cm}^{2}$
35. A triangle has vertices $\mathrm{P}(-1,6), \mathrm{Q}(-3,-4)$ and $\mathrm{R}(1,-$ 4). Find the midpoints of $P Q$ and $Q R$ respectively.
A. $(-1,0)$ and $(-1,-1)$
B.
$(-2,1)$ and $(-1,-4)$
C. $(0,-1)$ and $(-1,-4)$ D
$(-2,1)$ and $(0,1)$
36. Evaluate $\int_{2}^{3}\left(x^{2}-2 x\right) d x$
A. $4 / 3$
B. $1 / 3$
C. 2
D. 4
37. If $y=3 \sin (-4 x), d y / d x$ is
A. $\quad-12 \cos (-4 x)$
B. $\quad 12 \sin (-4 x)$
C. $\quad 12 x \cos (4 x)$
D. $\quad-12 x \cos (-4 x)$
38. Determine the maximum value of $y=3 x^{2}+5 x-3$ at
A. 6
B. 0
C. 2 .
D. 4
39. Find the slope of the curve $y=2 x^{2}+5 x-3$ at $(1,4)$.
A. 7
B. $\quad 9$
C. 4
D. 6

The histogram above shows the ages of the victims of a pollution. How many people were involved in the pollution?
A. $\quad 18$
B. 21
C. 15
D. 20
41.

Value	0	1	2	3	4
Frequency	1	2	2	1	9

Find the mean of the distribution above.
A. 4
B. 3
C. 1
D. 2
42. The mean of the numbers $3,6,4$, x and 7 is 5 . find the standard deviation
A. 2
B. 3
C. $\sqrt{3}$
D. $\sqrt{2}$
43. A bag contains 5 blsck ball and 3 red balls. Two balls are picked at random without replacement. What is the probability that a black and a red balls are picked?
A. $\quad 5 / 14$
B. $13 / 28$
C. $3 / 14$
D. $15 / 28$
44. On a pie chart, there are four sectors of which three angles are $45^{\circ}, 90^{\circ}$ and 135°. if the smallest sector represents \#28.00, how much is the largest sector?
A. \#48.00
B. \#96.00
C. \#42.00
D. \#84.00
45. The range of $4,3,11,9,6,15,19,23,27,24,21$ and 16 is
A. 23
B. 24
C. 21
D. 16
46.

Number	1	2	3	4	5	6
Frequency	12	20	x	21	$x-1$	28

The result of tossing a fair die 120 times is summarized above. Find the value of x.
A. 21
B. 19
C. 22
D. 20
47. If ${ }^{n} P_{3}-6\left({ }^{n} C_{4}\right)=0$, find the value of n
A. 6
B. 5
C. 8
D. 7
48. Two dice are thrown. What is the probability that the sum of the numbers is divisible by 3 .
A. $\quad 1 / 2$
B. $\quad 1 / 3$
C. $\quad 1 / 4$
D. $2 / 3$
49. Find the number of committees of three that can be formed consisting of two men and one woman from four men and three women.
A. 24
B. 18
C. 3
D. 6
50. By how much is the mean of $30,56,31,55,43$ and 44 less than the median.
A. $\quad 0.50$
B. 0.75
C. 0.17
D. 0.33

Mathematics 2004

1

Find x and y respectively in the subtraction above c arried out in base 5
A.
2, 4
B. 3,2
C. 4,2
D. 4,3
2. Find p, if $451_{6}-p_{7}=305$
A. 611_{7}
B. $\quad 142_{7}$
C. $\quad 116_{7}$
D. $\quad 62_{7}$
3. $\quad{ }^{1} /{ }_{10} \mathrm{x}^{2} /{ }_{3}+1 / 4$
$1 / 2 \div 3 / 5^{-1 / 4}$

A	$2 / 25$	B.	$19 / 60$
C.	$7 / 12$	D.	$19 / 35$

4. A farmer planted 5000 grains of maize and harvested 5000 cobs, each bearing 500 grains. What is the ratio of the number of grains sowed to the number harvested?
A. $1: 500$
B. $1: 5000$
C. $1: 25000$
D. 1:250000
5. Three teachers shared a packet of chalk. The first teacher got $2 / 5$ of the chalk and the second teacher received $2 / 15$ of the remainder. What fraction did the third teacher receive?
A. $\quad{ }_{11} / 25$
$\begin{array}{ll}\text { B. } \quad{ }^{12} / 25 \\ \text { D. } & 8 / 15\end{array}$
C. $\quad 13 /{ }_{25}$
D. $\quad 8 / 15$
6. Given that $3 \sqrt{ } 4^{2 x}$, find the value of x
A. 2
B. 3
C. 4
D. 6
7. \quad Simplify $1 \times \sqrt{\sqrt{3}}+2$ in the form $a+b \sqrt{\sqrt{3}}$
A. $\quad-2-3$
B. $-2+3$
C. 2- 3
D. $2+3$
8. If $6 \log _{x} 2-3 \log _{x} 3=3 \log _{5} 0.2$, find x.
9.

A.
C.

The shaded region in the venn diagram above
A. $\quad P^{c} \cap(Q R) B$
$P \cap Q$
C. $\quad P^{c} U(Q \cap R)$
D. $\quad \mathrm{P}^{\mathrm{c}} \cap(\mathrm{QUR})$
10. In a class of 40 students, each student offers at least one of Physics and Chemistry. If the number of students that offer Physics is three times the number that offer both subjects and the number that offers Chemistry is twice the number that offer Physics, find the number of students that offer Physics only.
A. 25
B. 15
C. 10
D. 5
11. Find the values of x where the curve $y=x^{3}+2 x^{2}-5 x-6$ crosses the x-axis.
A. $\quad-2,-1$ and 3
B. $\quad-2,1$ and -3
C. $\quad 2,-1$ and -3
D. 2,1 and 3
12. Find the remainder when
$3 x^{3}+5 x^{2}-11 x+$ is divided by $x+3$
A. $\quad 4$
B. $\quad 1$
C. -1
D. -4
13. Factorize completely $\mathrm{ac}-2 \mathrm{bc}-\mathrm{a}^{2}+4 \mathrm{~b}^{2}$
A. $\quad(a-2 b)(c+a-2 b)$
B. $\quad(a-2 b)(c-a-2 b)$
C. $\quad(a-2 b)(c+a+2 b)$
D. $\quad(a-2 b)(c-a+2 b)$
14. y is inversely proportional to x and $\mathrm{y}=4$ when $\mathrm{x}=1$ / 2 . find x when $y=10$
A. $1 / 10$
B. $1 / 5$
C. 2
D. 10
15. The length L of a simple pendulum varies directly as the square of its period T . if a pendulum with period 4 secs is 64 cm long, find the length of a pendulum whose period is 9 sec .
A. 36 cm
B. $\quad 96 \mathrm{ccm}$
C. $\quad 144 \mathrm{~cm}$
D. 324 cm

The shaded area in the diagram above is represented by
A. $\quad\{(x, y): y+3 x<6\}$
B. $\quad\{(x, y): y+3 x<-6\}$
C. $\quad\{(x, y): y-3 x<6\}$
D. $\quad\{(x, y): y-3 x<-6\}$
17. What are the integral values of x which satisfy the inequality $-1<3-2 x \leq 5$?
A. $\quad-2,1,0,-1$
B. $\quad-1,0,1,2$
C. $-1,0,1$,
D. $0,1,2$
18. The nth terms of two sequences are $Q_{n}-3.2^{n-2}$ and $\mathrm{U}_{\mathrm{m}}=3.2^{2 \mathrm{~m}-3}$. find the product of Q_{2} and U_{2}
A. 3
B. 6
C. 12
D. 18
19. Given that the first and fourth terms of a G.P are 6 and 162 respectively, find the sum of the first three terms of the progression.
A. 8
B. 27
C. 48
D. 78
20. Find the sum to infinity of the series $1 / 2,1 / 6,1 /$
\qquad
A. $\quad 1$
B. $3 / 4$
C. $2 / 3$
D. $1 / 3+$
21. If the operation * on the set of integers is defined by $\mathrm{p} * \mathrm{q}=$ " pq , find the value of $4 *(8 * 32)$.
A. 16
B. 8
C. 4
D. 3
22.

The inverse of the matrix				
is				
A.	(1 1)	B		(1-1)
	(-1 2)			$\left(\begin{array}{ll}1\end{array}\right)$
C.	(1 1)	D		(1-1)
	(12)			(-12)

24. The sum of the interior angles of a pentagon is $6 x+$ $6 y$. find y in terms of x
A. $y=60-x B$.
$y=90-x$
C. $y=120-x$
D. $y=150-x$
25. PQRSTV is a regular polygon of side 7 cm inscribed in a circle. Find the circumference of the circle PQRSTV.
A. $\quad 22 \mathrm{~cm}$
B. $\quad 42 \mathrm{~cm}$
C. $\quad 44 \mathrm{~cm}$
26.

P, R and S lie on a circle centre O as shown above while Q lies outside the circle. Find ĐPSO.
A. $\quad 35^{0}$
B. $\quad 40^{\circ}$
C. $\quad 45^{\circ}$
D. 55°
27.

In the diagram above, $\mathrm{PQ}=4 \mathrm{~cm}$ and $\mathrm{TS}=6 \mathrm{~cm}$, if the area of parallelogram PQTU is $32 \mathrm{~cm}^{2}$, find the area of the trapezium PQRU
A. $24 \mathrm{~cm}^{2}$
B. $\quad 48 \mathrm{~cm}^{2}$
C. $60 \mathrm{~cm}^{2}$
D. $\quad 72 \mathrm{~cm}^{2}$
28. An arc of a circle of length 22 cm subtends an angle of $3 x^{0}$ at the centre of the circle. Find the value of x if the diameter of the circle is 14 cm .
A. $\quad 30^{0}$
B. $\quad 60^{0}$
C. $\quad 120^{\circ}$
D. 180°
29. Determine the locus of a point inside a square PQRS which is equidistant from PQ and QR
A. The diagonal PR. B. The diagonal QS
C. Side SR
D. The perpendicular bisector of PQ .
30. The locus of a point which is 5 cm from the line LM is a
A. pair of lines on opposite sides of LM and parallel to it, each distances 5 cm form LM
B. line parallel to LM and 5 cm from LM
C. pair of parallel lines on one side of LM and parallel to LM
D. line distance 10 cm from LM and parallel to LM.
31. Find the value of $\alpha^{2}+\beta^{2}$ if $a+b=$ and the distance between the points $(1, \alpha)$ ands $(\beta, 1)$ is 3 units.
A. 3
B. 5
C. 11
D. 14
32. Find the midpoint of the line joining $\mathrm{P}(-3,5)$ and Q $(5,-3)$.
A. $(4,-4)$
B.
$(4,4)$
C. $(2,2)$
D.
$(1,1)$
33.

Find the value of x in the figure above.
A. $\quad 20 \sqrt{ } 6$
B. $\quad 15 \sqrt{ } 6$
C. $\quad 5 \sqrt{6}$
D. $\quad 3 \sqrt{6}$
34. The shadow of a pole $5 \sqrt{ } 3 \mathrm{~m}$ high is 5 m . find the angle of elevation of the sun.
A. $\quad 30^{\circ}$
B. $\quad 45^{0}$
C. $\quad 60^{0}$
D. $\quad 75^{0}$
35. Find the derivative of $(2+3 x)(1-x)$ with respect to X
A. $\quad 6 x-1$
B. $\quad 1-6 x$
C. 6
D. -3
36. Find the derivative of the function $y=2 x^{2}(2 x-1)$ at the point $x=-1$
A. -6
B. -4
C. 16
D. 18
37. If $y-3 \cos (x / 3)$, find ${ }^{d y} /{ }_{d x}$ when $\mathrm{x}=3 \pi / 2$
A. 2
B. $\quad 1$
C. -1
D. -3
38. What is the rate of change of the volume v of hemisphere with respect to its radius r when $r=2$?
A. $\quad 2 \pi$
B. $\quad 4 \pi$
C. 8π
D. 16π
39. Evaluate ${ }^{3}\left(x^{2}-1\right) d x$
A. $\quad 6{ }^{2} / 3$
B. $\quad 2 / 3$
C. $\quad-2 / 3$
D. $\quad-6^{2} / 3$

The pie chart above shows the distribution of the crops harvested from a farmland in a year. If 3000 tonnes of millet is harvested, what amount of beans is harvested?
A. 9000 tonnes
B. 6000 tonnes
C. 1500 tonnes
D. 1200 tonnes
41. I. Rectangular bars of equal width
II. The height of each rectangular bar is proportional to the frequency of the 3 corresponding class interval.
III. Rectangular bars have common
sides with no gaps in between.
A histogram is described by

A.	I and II	B.	I and III
C.	I,II and III	D.	II and III®

42.

Cumulative

The graph above shows the cumulative frequency curve of the distribution of marks in a class test. What percentage of the students scored more than 20 marks?
A. 68%
B. 28%
C. 17%
D. 8%
43. The mean age of a group of students is 15 years. When the age of a teacher, 45 years old, is added to the ages of the students, the mean of their ages becomes 18 years. Find the number of students in the group.
A. 7
B. $\quad 9$
C. 15
D. 42
44. The weights of 10 pupils in a class are $15 \mathrm{~kg}, 16 \mathrm{~kg}$, $17 \mathrm{~kg}, 18 \mathrm{~kg}, 16 \mathrm{~kg}, 17 \mathrm{~kg}, 17 \mathrm{~kg}, 17 \mathrm{~kg}, 18 \mathrm{~kg}$ and 16 kg . What is the range of this distribution?
A. 1
B. 2
C. 3
D. 4
45. Find the mean deviation of 1,2,3 and 4
A. $\quad 1.0$
B. $\quad 1.5$
C. $\quad 2.0$
D. 2.5
46. In how many ways can 2 students be selected from a group of 5 students in a debating competition?
A. $\quad 10$ ways.
B. $\quad 15$ ways.
C. 20 ways
D. 25 ways.
47. A committee of six is to be formed by a state governor from nine state commissioners and three members of the state house of assembly. In how many ways can the members of the committee be chosen so as to include one member of the house of assembly?
A. $\quad 924$ ways
B. 840 ways
C. 462 ways
D. 378 ways
48. Some white balls were put in a basket containing twelve red balls and sixteen black balls. If the probability of picking a white ball from the basket is $3 / 7$, how many white balls were introduced?
A. $\quad 32$
B. 28
C. 21
D. 12
49. An unbiased die is rolled 100 times and the outcome is tabulated as follows:

No . of days	1	2	3	4	5	6
No . of students	20	x	50	40	$2 x$	60

What is the probability of obtaining 5 ?
A. $\quad 1 / 6$
B. $\quad 1 / 5$
C. $\quad 1 / 4$
D. $1 / 2$
50. A container has 30 gold medals, 22 silver medals and 18 bronze medals. If one medal is selected at random from the container, what is the probability that it is not a gold medal?
A.
$4 / 7$
B. $\quad 3 / 7$
C. $\quad 11 / 35$
D. $\quad 9 / 35$

