https://mytopschools.com/

Chemistry
1983-2004
JAMB
Questions

1. X is crystalline salt of sodium. Solution of X in water turns litmus red produces a gas which turns lime water milky when added to sodium carbonate. With barium chloride solution, X gives a white precipitate which is insoluble in dilute hydrochloric acid. X is

 $\begin{array}{ccc} \text{A.} & \text{Na}_2\text{,CO}_3 & \text{B.} \\ \text{C} & \text{NaHSO}_4 & \text{D} \end{array}$

B. NaHCO₃ D Na₂SO₃

E Na₂SO₄

2. The alkanol obtained from the production of soap is

A. ethanol B. glycerol

C. methanol D. propanol

E glycol

3. The flame used by welders in cotton metals is

A. butane gas flame

B. acetylene flame

C. kerosene flame

D. oxy-acetylene flame

E oxygen flame

4. Consecutive members of an alkane homologous series differ by

A. CH B. CH₂ C. CH₃ D. C_nH_n

E CnH_{2n+2}

5. If an element has the lectronic configuration $1s^2 2s^2 2p_6$ $3s_2 3p_3$, it is

A. a metal

B. an alkaline earth metal

C. an s-block element

D. a p-block element

E a transition element

6. Some copper (11) sulphate pentahydrate (CuSO₄5H₂O), was heated at 120oC with the following results: Wt of crucible = 10.00 g; Wt of crucible + CuSO₄5H₂O=14.98g; Wt of crucible + residue = 13.54g. How many molecules of water of crystallization were lost? [H=1, Cu =63.5, O=16, S=32]

A. 1 B. 2 C. 3 D. 4

E 5

7. The three-dimensional shape of methane is

A. hexagonal B. tigonal C. linear D. tertrahedral

E cubical

Question 8-10 are based on the following

An unknown organic compound X has a relative molecular mass of 180. It is a colourless crystalline solid, readily soluble in water. X contains the element C, H, and O in the atomic ratio 1:2:1. The compound has a

sweet taste and melts on heating. In the presence of yeast and in the absence of air X is converted to compound Y in the absence of air, X is converted to compound Y and colourless gas.

Compound Y reacts with sodium metal to produce a gas Z which gives a 'pop' sound with a glowing splint. Y also reacts with ethanoic acid to give a sweet smelling compound W.

8. Compound W is

A. a soap B. an oil
C. an alkane D. an ester
E. sucrose

9. The molecular formula of X is

A. $C_{12}H_{22}O_{11}$ B. $C_{6}H_{12}O_{6}$ C. $C_{3}H_{6}O_{3}$ D. $C_{7}H_{14}O_{7}$ E. $C_{4}H3O_{4}$

10. reaction of X with yeast forms the basic of the

A. plastic industry

B. textile industry

C. brewing industry

D. soap industry

E dyeing industry.

11. A mixture of common salt, ammonium chloride and barium sulphate can best be separated by

A. addition of water followed by filtration then sublimation

B. addition of water followed by sublimation then filtration

C. sublimation followed by addition of water then filtration

D. fractional distillation

E. fractional crystallization.

12. Which of the following relationships between the pressure P, the volume V and the temperature T, represents and ideal gas behaviors?

A. P & VT B. P & T/V C. PT & V D. PV & VT

E. P & V/T

13.

Solid ammonium chloride

Porous asbestos plug

Solid ammonium chloride

Fig. 1.

Heat (350°C)

In the above experiment (fig1) the litmus paper will initially

A. be bleached B. turn green C. turn red D. turn blue

E turn black

14.	The colour imparted to a flame by calcium ion
	is

green A. B. blue C. brick-red D. yellow

E lilac

In the reaction $M + N \iff P$; $\triangle H = + Q kJ$. 15. Which of the following would increase the concentration of the product?

> A. Decreasing the concentration of N

B. Increasing the concentration of P

C. Adding a suitable catalyst.

D. Decreasing the temperature

16. In which of the following processes is iron being oxidized?

1. Fe +
$$H_2SO_4 \rightarrow H_2$$
 + FeSO₄

2.
$$FeSO_4 + H_2S \rightarrow FeS + H_2SO_4$$

3 $FeCl + Cl \rightarrow 2FeCL_3$

4 $FeCl_3 + SnCl_2 \longrightarrow 2FeCL_2 + SnCl_4$

2 only A. 1 only B.

C. 3 only D. 1 and 3

E 2 and 4.

17.

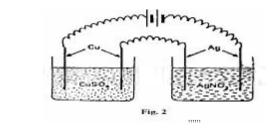


Fig.2

In the above experiment (fig.2), a current was passed for 10 minutes and 0.63 g of copper was found to be deposited on the cathode of CuSO₄ cells. The weight of AgNO₃ cell during the same period would be [Cu = 63, Ag - 108

A. 0.54 gB. $1.08\,\mathrm{g}$ C. $1.62\,\mathrm{g}$ D. $2.16\,\mathrm{g}$ E.

 $3.24 \, \mathrm{g}$

In the reaction Fe + Cu²⁺ \rightarrow Fe²⁺ + Cu, iron displaces 18. copper ions to form copper. This is due to the fact that

iron is in the metallic form while dthe copper is A. in the ionic form

B. the atomic weight of copper is greater than that of ion

C. copper metal has more electrons than ion metal

D. iron is an inert metal

E. iron is higher in the electrochemical series than copper.

19.

The correct name of the compound with the above structural formula is

A. 2-methylbut-1-ene

B. 2-methylbut-2-ene

C. 2-methylbut-1-ene

2-ethyprop-1-ene D.

E. 2-ethylprop-2-ene 20. How many isomeric forms are there for the molecular formula C₃H₆Br₂?

2 A. 1 B. C. 3 D. 4

E 5

21. A piece of burning sulphur will continue to burn in a gas jar of oxygen to give misty fumes which readily dissolve in water. The resulting liquid is

> sulphur (1V) trioxide A.

B. Tetraoxosulphate acid (V1)

C. Trioxosulphate (1V) acid

D. Dioxosulphate (11) acid

E Hydrogen sulphide

22. Sodium decahydrate (Na₂SO₄ 10H₂O) an exposure to air loses all its water of crystallization. The process of loss is known as

> A. Efflorescence B. Hygroscopy C. Deliquescence D. Effervescence

E Dehydration

23. Which of the following happens during the electrolysis of molten sodium chloride?

> A. Sodium ion loses an electron

B. Chlorine atom gains an electron

C. Chloride ion gains an electron

D. Sodium ion is oxidized

E Chloride ion is oxidized.

Crude petroleum pollutant usually seen on some Nigeria 24. creeks and waterways can be dispersed or removed by.

heating the affected parts order to boil off the A. petroleum

B. mechanically stirring to dissolve the petroleum

C. pouring organic solvents to dissolve the petroleum

D. spraying the water with detergents

E cooling to freeze out the petroleum.

An element is electronegative if 25.

> it has a tendency to exist in the gaseous form A.

B. its ions dissolve readily in water

C. it has a tendency to lose electrons

D. it has a tendency to gain electrons

E it readily forms covalent bonds

26. Solution X,Y, and Z have pH values 3.0, 5.0 and 9.0 respectively. Which of the following statements is correct?

> All the solution are acidic A.

B. All solution are basic

C. Y and Z are more acidic than water

D. Y is more acidic than X.

E Z is the least acidic

27. In the reactions

$$(1) H2 (g) + 1$$

$$2 O_{2}(g) H_{2}O(1); H=-2.86kJ$$

 $(11) C(s) + O_2(g) CO_2(g); H= -406 kJ$ the equations imply that

	A.	more heat is al	bsorbed h	eat is evolved in (1)		D.	Column chroma	atograph	У	
	B.	more heat is ab	sorbed in	n(11)		E	Evaporation			
	C.	less heat is evo					•			
	D.	reaction (11) p	,	*	35.	Increa	asing the pressure	of a gas		
	E.	reaction (1) pr				A.		_	netic energy of	the
	Ц	reaction (1) pro	occcus ia	ster than (11)		11.	molecules	cruge Ki	metic energy of	tiic
28.	W/biob	of these metals.	Ac Ec Di	and Curvill dissolve		D		f the cos		
20.			vig, re, Pi	o, and Cu will dissolve		B.	decreases the d	-	_	
		te HCI?				C.	decreases the to			
	A.	All the metals	~			D.	increases the d	-	-	
	B.	Mgm Fe, and C				E	increases the v	olume of	the gas.	
	C.	Mg, Fem and I								
	D.	Mg and Fe on	ly		36.		of a hydrated bariu			
	E	Mg only					anhydrous salt. Gi			
						mass	of the anhydrous	salt is	208, the number	of
29.	Stainle	ess steel is an allo	oy of			molec	cules of water of cry	ystallizat	ion of the barium	salt
	A.	Carbon, iron a	nd lead			is				
	B.	Carbon, ion an	d chromii	ım		A.	10	B.	7	
	C.	Carbon iron ar	nd copper			C.	5	D.	2	
	D.	Carbon, iron a	nd silver			E	1			
	E	Carbon and ire	on only							
			J		37.	3.06 9	g of a sample of pot	assium t	rioxochlorate	
30.	What	volume of 0.50 M	/IH,SO, w	rill exactly neutralize			KCIO ₃) was require			ion
		of 0.1 M NaOH s		•			.0cm ³ of water at 25			
	A.	$2.0\mathrm{cm}^3$	В.	$5.0\mathrm{cm}^3$			s [K=39, CI=35.5,			
	C.	6.8 cm ³	D.	8.3 cm ³		A.	5.0 moles dm ³	B.	3.0 moles dm ³	
	E.	10.4 cm ³	ъ.	0.5 cm		C.	2,5 moles dm ³	D.	1.0 moles dm ³	
	Ц	10.4011				E.	0.5 moles dm ₃	D.	1.0 mores um	
31.	Which	of the following	noir of	gases will NOT react		ь	0.5 moles um ₃			
51.				ure between 30°C and	38.	Thor	racking process is v	orvima	rtant in the netrole	um
			temperat	ure between 50 C and	30.		racking process is v	er y mipc	mant in the penoie	uIII
	400°C?		D	CO 111			try because it	1		
	A.	SO ₂ and NH ₃	B.	CO_2 and H_2		A.	gives purer pro			
	C.	NO ₂ and SO ₃	D.	SO ₃ and NO		B.	Yields more lub			
	E	CO and H ²				C.	Yields more eng		S	
						D.	Yields more asp			
32.				their ores after some		E.	Yield more cand	lle wax		
				trolysis (L) some by						
				a combination of both	39.		s that can behave			
	-		-	the following for the		chlori	ne and as an oxid	izing ag	ent toward hydrog	gen
	extrac			minum is correct?		sulph	ide is			
	A.	Iron (L), coppe	r (L) m al	uminum (T)		A.	O_2	B.	NO	
	B.	Iron (T), coppe	r (L), aluı	ninum (T)		C.	SO,	D.	NH_3	
	C.	Ion (TL), coppe	er (TL), al	uminium (TL)		E	CO,		3	
	D.	Iron (L), copper	r (T), alur	ninium (T).	40.	Whic	h if the following	g solutio	on will give a wh	nite
	E.	Ion (T), copper	(L), alum	inium (TL).			oitate with barium			
						flame				
33.	In the	preparation of so	me pure	crystals of Cu (NO ₃) ₂		A.	Na2SO ₄	B.	CuSO4	
				gave the following		C.	CaSO ₄	D.	CaCI,	
				Which of these shows		E	$(NH_4)_2 SO_4$	٥.	2	
		in his report?	nproyed.	Which of these shows			(1114/2504			
	A.		s reacted	with excess dilute	41.	The n	nass of an atom is o	letermin	ed by	
	Λ.	H,SO ₄	s reacted	with excess dilute	71.	A.	its ionization po		cu by	
	D	The solution v	una non na	untratad		B.			ntial	
	B. C.						its electrochem		nuai	
	۲.			was cooled, crystals		C.	the number of		and mester :	
	D	formed were re				D.	the number of			
	D.	•		d with very cold water		E	the number of	neutrons	and electrons	
	E.	The crystals w	ere then	allowed to dry.						
	··			_	42.		h of the following i	s neutral	ızation	
34.				on processes is most		reacti				
	•	to yield high qual	lity ethan	ol (>95%) from palm		A.	Addition of chl			
	wine?					B.	Addition of tric	xonirate	(V) acid (nitric ac	cid)
	A.	Fractional disl	lation wi	thout a dehydrant			to distilled water			
	B.	Simple distilla	tion with	out a dehydrant		C.	Addition of tric	xonirate	(V) acid (nitric ac	cid)
	C.			rith a dehydrant					acid (sulphuric ac	
				-						

- D. Addition of trioxonirate (V) (potassium nitrate) solution
- E Addition of trioxonirate (V) acid (nitric acid) potassium hydroxide solution.
- 43. A jet plane carrying 3,000 kg of ethane burns off all the gas forming water and carbondioxide. If all the carbondioxide is expelled and the water formed is condensed and kept on board the plane, then the gain in weight is

A. 1,800 kg B. 900 kg C. 600 kg D. 2,400 kg

E. 1,200kg

44. Liquid X, reacts with sodium trioxocarbonate (IV) (Na₂CO₃) to give a gas which turns calcium chloride solution milky. X is

A. Na₂SO4 (aq) B. KI (ag)
C. An alkali D. An acid
E. A hydrocarbon.

45. Which of the following statements is FALSE?

- A. copper (11) ion can be reduced to copper (1) ion by hydrochloric acid and zinc.
- B. Sodium metal dissolves in water giving oxygen
- C. Nitrogen is insoluble in water
- D. Carbondioxide is soluble in water
- E Lead has a higher atomic weight than copper
- 46. When sodium dioxonitrate (111) (HaNO, \) dissolves is

A. Exothermic B. Endothermic C. Isothermic D. Isomeric

E Hydroscopic

47. The equilibrium reaction between copper (1) chloride and chloride at 25°C and 1 atmosphere is represented by the equation:

 $2\text{CuCI}_2 + \text{CI}_2 \implies 2\text{CuCI}_2$ H = -166kJ. Which of the following statement is TRUE for the reaction, pressure remaining constant.

A. More CuCI, is formed at 40°C

- B. More CuCI₂ is formed at 10°C
- C. Less CuCI² is formed at 10°C
- D there is no change $\mathrm{CuCI_2}$ formed at 40°C and 10°C
- E More CuCI₂ is consumed at 40°C
- 48. $\operatorname{Zn} + \operatorname{H}^2 \operatorname{SO}_4 \longrightarrow \operatorname{ZnCI}_2 + \operatorname{H}_2$

The rate of the above reaction will be greatly increased if.

- A. the zinc is in the powered form
- B. a greater volume of the acid is used
- C. a smaller volume of the acid is used
- D. the reaction vessel is immersed in an ice-bath
- E the zinc is in the form of pellets.
- 49. $\operatorname{Zn} + \operatorname{H}_2 \operatorname{SO}_4 \longrightarrow \operatorname{Zn} \operatorname{SO}_4 + \operatorname{H}_4$

In the above reaction how much zinc will be left undissolve if 2.00 g of zinc treated with 10cm₃ of 1.0 M of H SO 2 [7n = 65, S=32, O=16, H=1]

- of H₂SO₄? [Zn =65, S=32, O = 16, H = 1] A. 1.35 g B. 1.00
- A. 1.35 g B. 1.00 g C. 0.70 g D. 0.65 g
- E $0.06\,\mathrm{g}$
- 50. 30cm3 of 0.1 M AI(NO3)3 solution is reacted with 100cm3 of 0.15M of NaOH solution. Which is in excess and by how much?
 - A. NaOH solution, by 70cm3
 - B. NaOH solution, by 60cm3
 - C. NaOH solution by 40cm3
 - D. AI (NO³)³, solution by 20cm³
 - E AI (NO³)³ solution, by 10cm³

Chemistry 1984

- 1. Sodium chloride may be obtained from brine by
 - A. titrationB. decantationC. distillationD. evaporation
 - E sublimation
- 20cm³ of hydrogen gas are sparked with 20cm³ of oxygen gas in an eudiometer at 373K (100°C) and 1 at atmosphere. The resulting mixture is cooled to 298 K (25°C) and passed over calcium chloride. The volume of the residual gas is
 - A. 40cm³ B. 20cm³ C. 30cm³ D. 10cm³ E. 5 cm₃

- 3. For the reaction NH₄ NO $_2 \rightarrow N_2 + 2H_2O$ calculate the volume of nitrogen that would be produced at S.T.P from 3.20 g of the trioxonirate (111) salt.
 - from 3.20 g of the trioxonirate (111) salt.

 A. 2.24 dm³ B. 2.24 cm³
 - C. 1.12 cm³ D. 1.12 dm³
 - E 4.48dm³

(Relative atomic masses: N = 14m O = 16, H=1).

- 4. Manganese (1V) oxide reacts with concentrated hydrochloric acid according to the equation
 - $MnO_2 + xHCI \rightarrow MnCI_2 + CI + yH_2O$. x and y are
 - A. 2 and 5 respectivelyB. 2 and 4 respectively

C.	and 2 respectively
D.	4 and s2 respectively
E	4 and 1 respectively

5. A molar solution of caustic soda is prepared by dissolving

A. 40 g NaOH in 100 g of water
B. 40 g NaOH in 1000 g of water
C. 20 g NaOH in 500 g of solution
D. 20 g NaOH in 1000 g of solution
E. 20 g NaOH in 80 g of solution.

6. Which among the element 1. Carbon 2. Oxygen 3. Copper 4. Bromine 5. Zinc will NOT react with either water of stream?

A. 1 and 2 B. 2 and 3 C. 3 and 4 D. 1, 2, and 3 E 2, 3 and 5

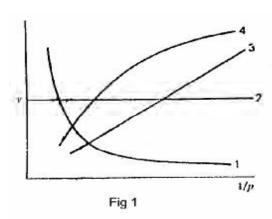


Fig 1

7.

Which of the curves shown in fig 1 represents the relationships between the volume (v) and pressure (p) of an ideal gas at constant temperature?

A. 1 B. 2 C. 3 D. 4 E. 1 and 3

8. Naphthalene when heated melts at $354 \, \text{K} \, (81^{\circ} \, \text{C})$. At this temperature the molecules of naphthalene .

A. decompose into smaller molecules

B. change their shape

C. are oxidized by atmospheric oxygen

D. contract

E become mobile as the inter molecular forces are broken.

9. The ration of the number of molecules in 2g of hydrogen to that in 16 g of oxygen is

A. 2:1 B. 1:1 C. 1:2 D. 1:4 E. 1:8

10. Which combination of the following statements is correct?

1. lowering the activation energy

2 conducting the reaction in a gaseous state

3. increasing the temperature

removing the products as soon as they are formed

5. powdering the reactant if solid

A. 1,2 and 3 B. 1,3 and 5 C. 2, 3 and 5 D. 3 and 4 E. 3 and 5

The balance equation for the reaction of tetraoxosulphate (V1) acid with aluminium hydroxide to give water and aluminium tetraoxosulphate (V1) is

A. $H_2SO_4 + AISO_4 \rightarrow 2H_2O + AISO_4$

B. $HSO_4 + AIOH \rightarrow H_2O + AISO4$

11

12.

13.

C. $3H2SO_4 + 2AIH_3 \rightarrow 6H2OH + AI(SO_4)_3$

D. $3H2SO4 + 2AI(OH)3 \rightarrow 6H2O + AI(SO_4)_3$

E $H_2SO_4 + AI(OH)_3 \rightarrow H_2O + AI_2(SO4)_3$

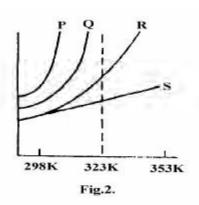


Fig. 2.

The solubility curves of four substances are shown in Fig.2. Which of the four substances would crystallize from a saturated solution cooled from 353 K (80°C) to 323 K (50°C)

A. P and Q B. P and R
C. P and S D. R and S

E Q and R.

which of the following mixtures would result in a solution of pH greater than 7?

A. 25.00 cm³ of 0.05 M H₂SO₄ and 25.00 cm³ of 0.50 m Na₂CO₃

B. 25.00 cm³ of 0.50 M H₂SO₄ and 25;00 cm³ of 0.10 M NaHCO₃

C. 25.00 cm³ of 0.11 M H₂SO₄ and 25.00 cm³ of 0.10 M NaOH

D. 25.00 cm³ of 0.11 M H₂SO₄ and 50.00 cm³ of 0.50 M NaOH

E. $25.00 \,\mathrm{cm^3}\,\mathrm{of}\,0.25\,\mathrm{MH_2SO_4}\,\mathrm{and}\,50.00\,\mathrm{cm^3}\,\mathrm{of})$.20 M NaOH

14. In which of the following reactions does hydrogen peroxide acts as a reducing agent?

A. $H_2S + H_2O \rightarrow S + 2H_2O$

B. $PbSO_3 + H_2O_2 \longrightarrow PbSO_4 + H_2O$

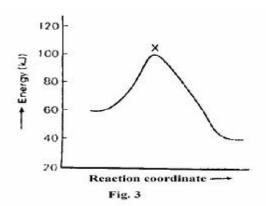
C. $2'! + 2H + H_2O \longrightarrow I_2 + 2H_2O$

D. $PbO_2 + 2HNO_3 + H_2O_2 \longrightarrow Pb (NO_3)_2 + 2H_2O_2 + O_2$

E SO + $H_2O_2 \longrightarrow H_2SO_4$

15. For the reaction $2Fe + 2^{e} \longrightarrow 2Fe^{2+} + I_2$, which of the following statements is TRUE?

A. Fe is oxidized to Fe


B. Fe^{3+} is oxidized to Fe^{2+}

C. I is oxidized to I

D. I- is reduced to I,

E. I is displacing an electron from Fe³⁺

16.

The diagram above (Fig. 3) shows the energy profile for the reaction A+B=C+D. form this diagram, its clear that the reaction is

spontaneous A.

B. isothermal

C. adiabatic D. exothermic

E endothermic

17. In dilute solute the heat of the following NaOH + HCI = $NaCI + H_2O + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$ is

 $+28.65\,\text{kJ}$ A.

-28.65 kJB.

C. $+57.3 \, kJ$ D. $-114.6 \, kJ$

E. -229.2 kJ

18. For the reactions: (1 Melon oil + NaOH□! Soap + Glycerol (11) $3\text{Fe} + 4\text{H2O} \rightarrow \text{Fe}_2\text{O}_4 + 4\text{H}_2$ (111) N_2O_4 2NO₂. Which of the following statements is true?

Each of the three reactions requires a catalyst

All the reactions demonstrate Le Chatelier's B. principle

C. The presence of a catalyst will increase the yield of products

D. Increase in pressure will result in higher yields of the products in 1 and 11 only

E Increase in pressure will result in higher of the products in 111 only.

19. Which of the following methods may be used to prepare trioxonirate (V) acid (nitric acid) in the laboratory?

> Heating ammonia gas with tetraoxosulphate A. (1V) acid

B. Heating ammonium trioxosulphate (V) with tetraoxonitrate (V) acid

C. Heating sodium trioxonirate (v) with tetraoxosulphate (V1) acid

D. Heating potassium trioxonirate (V) with calcium hydroxide.

E Heating a mixture of ammonia gas and oxygen\

20. Lime -water, which is used in the laboratory for the detection of carbon (1V) oxide, is an aqueous solution of:

> A. Ca (OH),

B. CaCO,

C. CaHCO, D. CaSO,

E. N,CO, 21. An element that can exist in two or more different structure forms which possess the desame chemical properties is said to exhibit

> A. polymerism

B. isotropy

C. isomorphism D. isomerism

E allotropy.

22. Sulphur....

> A. Forms two alkaline oxides

B. Is spontaneously flammable

C. Burns with a blue flame

D. Conducts electricity in the molten state

E Is usually stored in the form of sticks in water.

23. Which off the following statements is NOT true of carbon monoxide?

> CO is poisonous A.

B. CO is readily oxidized at room temperature by air to form Co,

C. CO may be prepared by reducing CO₂, mixed coke heated to about 1000°C

D. CO may be prepared by heating charcoal with a limited amount of O₂

E CO is a good reducing agent.

24. From the reactions:

 $ZnO + Na_2O \longrightarrow Na_2ZnO$ and

 $ZnO+CO2 \longrightarrow ZnCO^3$ it may be concluded that zinc oxide is

D.

D.

A. neutral B. basic

amphoteric

C. acidic E a mixture

25. An example of a neutral oxide is

> A. AL_2O_3 C. CO,

B. NO.

 ∞

E SO,

 $3CI_2 + 2NH_3 \rightarrow N_2 + 6HCI$. In the above reaction, 26. ammonia acts as.

a reducing agent A.

> B. an oxidizing agent

C. an acid

D. a catalyst

E a drying agent

27. In the Haber process for the manufacturer of ammonia, finely divided iron is used as

> A. an ionizing agent

> B. a reducing agent

C. a catalyst

a dehydrating agent D.

E an oxidizing agent.

28. An organic compound with a vapour density 56.5 has the following percentage composition: C = 53.1%, N =12.4%, O = 28.3%, H = 6.2%. The molecular formula of the compound is

> C₃H₆O₂N A.

B.

C_zH_zO_zN

C. $(C_1H_2O_2N)^{1/2}$ D.

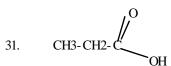
C,H,O,N

E $(C_{\varepsilon}H_{\varepsilon}ON)_{\alpha}$

Relative atomic masses: N = 12.4%, O = 28.3%, H = 1)

20	TP1111141	. C (1 1		
29.	The hybridization	of the carbon	atom 1	n etnyne is

A.	Sp^	
C.	sp^2	


B. sp^3 D. sp

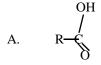
E

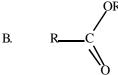
30. When the kerosene fraction form petrol is heated at high temperature, a lower boiling liquid is obtained. This process is known as

A.	•	polymerization	B.	refining
C.		hydrogenation	D.	cracking

E fractional distillation

Is


10			
A.	acetic acid	B.	propanal
C.	propanol	D.	ethanoic acid
г		1	


E propanoic acid

32. Alkaline hydrolysis of naturally occurring fats and oils

- A. fats and acids
- B. soaps and glycerol
- C. margarine and butter
- D. esters
- E detergents.

33. Which of the following represents a carboxylic acid?

D. R - COOCOR

E
$$R - C$$

34. which of the statement is INCORRECT?

- fractional distillation of crude petroleum will give following hydrocarbon fuels in order of increasing boiling point: Butane < petrol < kerosene
- B. $H_2C = CH_2$ will serve as a monomer in the preparation of polythene
- Both but -1- ene and but -1-1yne will decolorize bromine readily.
- But –2 ene will react with chlorine to form 2, 3 dichlorobutane.
- Calcium carbide will react with water to form any alkayne

- 35. which of the following statement is NOT correct about all four of the acids: HBr, HNO₃H₂CO₃ and H₂SO₄? They
 - A. dissolve marble to liberate litmus red
 - B. have a pH less than 7
 - C. turn blue litmus red
 - D. neutralize alkalis to form salt
 - E. react with magnesium to liberate hydrogen.
- 36. If the cost of electricity required to deposit 1 g old magnesium is N5.00. How much salt would it cost to deposit 10 g of aluminium?

N10.00 A. B. C.

N27.00 N44.44 D. N66.67

E N33.33.

(Relative atomic masses: AI = 27, Mg = 24).

37, In an experiment, copper tetraoxosulphate (V1) solution was electolysed using copper electrodes, The mass of copper deposited at the cathode by the passage of 16000 coulombs of electricity is

> A. 16.70 g

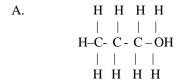
B. 17.60g

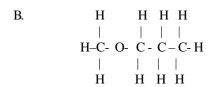
C. 67.10 g

- 10.67 g D.
- E 60.17 g

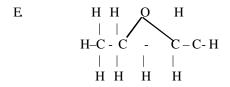
(Relatively atomic masses: Cu = 63.5 m O = 16, H = 1, S = 32).

- $^{19}_{9}\text{U}$ $^{24}_{12}\text{S}$ $^{20}_{10}\text{T}$ $^{19}_{7}$. Which of the following 38. statements is NOT true of the elements R, U, S, T, Y? A.
 - R is an isotope of hydrogen B. U and Y are isotopes
 - C.
 - R,U,S and T are metals
 - D. T is a noble gas
 - E. S will react with oxygen to form SO
- 39. Nitrogen can best be obtained from a mixture of oxygen and nitrogen by passing the mixture over
 - potassium hydroxide A.
 - B. heated gold
 - C. heated magnesium
 - D. heated phosphorus
 - E. calcium chloride.
- 40. Water is said to be 'hard' if it
 - A. easily forms ice
 - B. has to be warmed before sodium chloride dissolves in it
 - C. forms an insoluble scum with soar
 - D. contains nitrates
 - E. contains sodium ions.
- 41. Sodium hydroxide (NaOH) pellets are


deliquescent A.


hygroscopic В.

C. efflorescent D. hydrated


E fluorescent.

42. Which of the following structure formulae is NOT numeric with others?

- 43. Alkalines
 - A. are all gases
 - B. have the general formula $C_nH_{2n} + {}_2O$
 - C. contains only carbon and hydrogen
 - D. are usually soluble in water
 - E are usually active compounds.
- 44. If an excess of a liquid hydrocarbon is poured into a jar of chlorine, and the sealed jar is then exposed for several hours to bright sunlight, all the chlorine gas is consumed. The hydrocarbon is said to have undergone
 - A. a polymerization reaction
 - B. an isomerization reaction
 - C. an addition reaction
 - D. a substitution reaction
 - E a reduction reaction
- 45. The function of conc. H₂SOH₄ in the etherification of ethanoic acid with ethanol is to
 - A. serves as a dehydrating agent
 - B. serves as solvent
 - C. act as a catalyst
 - D. prevent any side reaction
 - E serve as an oxidizing reaction

- 46. A piece of sea shell, when dropped into a dilute solution of hydrochloric acid produces a colourless odorless gas, which turns clear limewater milky. The shell contains
 - A. sodium chloride
 - B. ammonium nitrate
 - C. calcium carbonate
 - D. calcium chloride
 - E magnesium chloride
- 48. An aqueous solution of a metal salt, Mm gives a white precipate with NaOH, which dissolves in excess NaOH. With aqueous ammonium the solution of M also gives a white precipate which dissolves in excess ammonia. Therefore the caution in M is
 - A. Zn^{++} B. Ca^{++}
 - C. AI⁺⁺⁺
 - D. Pb⁺⁺
 - E Cu⁺⁺
- 49. The I.U.P.A. C name for the compound

$$\begin{array}{c} H \\ | \\ CH-C-CH_2-CH_3 \\ | \\ CH_3 \text{ is} \end{array}$$

- A. isopropylethene
- B. acetylene
- C. 3-methylbutane
- D. 2-methybutane
- E. 5-methypentane.
- 50. At S.T.P how many litres of hydrogen can be obtained from the reaction of 500cm³ of 0.5 M H₂SO₄ excess zinc metal.
 - A. 22.4 dm₃
 - B. 11.2 dm₃
 - C. 6.5 dm₃
 - D. 5.6 dm,
 - E. $0.00\,\mathrm{dm}$

(Gram molecular volume of $H2 = 22.4 \,\mathrm{dm}_3$)

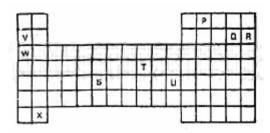
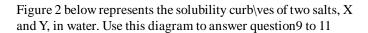
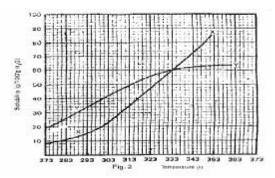


Fig. 1

- 1. Figure shows part of the periodic Table. Which of the elements belongs to the p-block?
 - S,T and U. A.
 - V, W and X B.
 - C. S and T only
 - D. P, Q and R
 - E V,W, X and S.
 - 2. Which of the following conducts electricity?
 - Sulphur A.
- B. Graphite
- C. Diamond
- Red phosphorus
- D.
- E Yellow phosphorus.
- An organic compound contains 72% carbon 12% 3. hydrogen and 16% oxygen by mass. The empirical formula of the compound is
 - $C_6H_{22}O_3$ A.
- ${{\rm C_6 H_{10} O_3} \atop {\rm C_6 H_{12} O}}$ D.
- $C_{12}H_{12}O$ C. E C₃CH₁₀
- (H=1, C=12, O=16).
- 0.499 of CuSO₄.xH₂O when heated to constant weight 4.
 - gave a residue of 0.346 g. The value of x is 0.5 A.
 - B. 2.0
 - C. 3.0
- D. 4.0
- E 5.0.
- (Cu = 63.5, S = 32.0 O = 16, H = 1).
- 5. In an experiment which of the following observation would suggest that a solid sample is a mixture? The
 - solid can be ground to a fine powder A.
 - B. density of the solid 2.25 g dm-3
 - solid begins to melt until 648 K C.
 - solid absorbs moisture from the atmosphere D. and turns into a liquid
 - E solid melts at 300 K.
- Hydrogen diffuses through a porous plug 6.
 - at the same rate as oxygen A.
 - B. at a slower rare than oxygen
 - C. twice as fast as oxygen
 - D. three times as fast as oxygen
 - E four times as fast as oxygen.
 - Given the molecular mss of iron is 56 and that of oxygen is 16, how many moles of Iron (111) oxide will be contained in 1 kg of the compound?


- A. 25.0 moles 6.25 moles
- B. 12.5 moles D. 3.125 moles
- E. 0.625 moles
- 3.0 g of a mixture of potassium carbonate and potassium chloride were dissolved in a 250cm³ standard flask. 25 cm₃ of this solution required 40.00cm³ of 0.1 M HCI for neutralization. What is the percentage by weight of K₂CO₂ in the mixture?


A. 60 C.

B.

72

89 D. E 92 (K = 39, O = 16, C = 12).

- 9. At room temperature (300K)
 - Y is twice as soluble as X A.
 - B. X is twice as soluble as Y
 - C. X and Y soluble to the same extent
 - D. X is three times as soluble as Y
 - Y is three times as soluble as X
- 10. If 80 g each of X and Y are taken up in 100g of water at 353 K we shall have.
 - A. only 10 g of X and Y undissolve
 - only 16 g of Y undissolve B.
 - C. 10 g of X and 16 g of Y undissolved
 - D. all X and Y dissolved
 - E. all X and Y undissolved
- 11. If the molar mass of X is 36 g, the number of moles of X dissolved at 343 is

D.

A. 0.2 moles C. 1.5 moles B. 0.7 moles

2.0 moles

E. 3.0 moles

- 12. Some properties of chemical substances are mentioned below (i) solar taste (ii)slippery to touch (iii)yields alkaline gas with ammonium salts (iv) has pH less than 7 (v) turns phenolphthalein pink. Which of the above are NOT typical properties of alkaline?
 - (i), (iv) and (v) A.
 - B. (iv) and (v)

	C. D.	(i) and (iv) (ii) and (v)					on monoxide an able source(s) of t			
	E	(ii), (iii) and (v	7)			A.	automobile decomposition	exhaust		
13.	A ce	rtain volume of a	gas at 298	K is heated such that		В.	combustion o		automob	ile exhaust
				our times the original		C.	biological ded			
	valu	es. What is the ne	w tempera			D.	combustion of	f coal, aut	omobile	exhaust and
	A.	18.6 K	В.	100.0 K		_	biological dec	_		
	C. E	298.0 K 47689.0 K	D.	1192.0 K		E	combustion decompositio		l and	biological
14.	•	rogen is not liberate with zinc because		trioxonirate (v) acid	21.		rect electrochem			
	A.	Zinc is render		e by the acid			a, Ca, Al, Mg, Zr changing	і, ге, го, г	1, Cu, П	,, Ag, Au by
	В.		_	oxidized to water		A.	Al and Mg	B.	Zn an	d Fe
	C.	Oxides of niti				C.	Zn and Pb	D.	Pb and	
	D.	All nitrates ar	e soluble	in water		E	Au and Hg.			
	E	trioxonitrate	v acid is a	strong acid.						
15.				ethanol, toluene and	22.		rtain industrial ical equation 2A(Which of the foll			
				, 383.6 K and 372.5 K				owing cond	litions wi	II favour the
	_	ectively. which is	iquia nas	the highest vapour		yieia A.	of the product? Increases in	the tempe	aratura	dacrassa in
	A.	water	B.	Toluene		Λ.	pressure.	the tempe	Statuic,	accicase in
	C.	Ethanol	D.	Butan-2-ol		B.	Increase in te	mperature	increase	in pressure
	E	None				C.	Decrease in te	_		_
16.				nples of nitrogen gas		D.	Decrease in te	_		_
				les 1 is prepared by from air and sample 2		E	Constant tem	perature, i	ncrease i	n pressure.
				itrogen (i) oxide over	23.	2MnO	$D_4^- + 10Cl^- + 16H +$	-'! 2Mn ²⁺ +	5Cl ₂ + 8H	I,O. which of
	heat	ed copper? Samp	ole 1 is				ibstances serves			
	A.	purer than sar				A.	Mn ²⁺	B.	Cl-	
	B.	slightly dense		-		C.	H ₂ O	D.	MnO_4	
	C.	in all respects				E	$\overrightarrow{\text{Cl}}_2$			
	D. E	slightly less r	_	has a light brown.	24.	In the	reaction H O '11	H2 ±1/4∩′) н	2/136000kT2
17.				olyzed using platinum	24.	which positi	reaction H ₂ O _{(g} '!] n of the following	has no effe	ect on the	equilibrium
17.				amperes is passed for		A.	Adding argor	n to the sys	stem	
		. How many gram				B.	Lowering the			
		A. 0.457 g	В.	$0.500\mathrm{g}$		C.	Adding hydro	ogen to the	e system	
		C. 0.882 g	D.	0.914 g		D.	Decreasing th			
		E 1.00 g (C	u = 63.5 m	F = 96500 coulombs)		E	Increasing the	e temperati	ure.	
18.		Y ← Z is an equi talyst	librium rea	action. The addition of	25.		n of the following on of iron(11) tet		-	
			ount of W	produced in a given		A.	copper	B.	mercu	
		time		L		C.	silver	D.	Zinc	- 5
		increase the rate of Y and Z	f change ii	n concentrations of X,		E	Gold			
				earance of X and Y	26.	Comp	olete hydrogenati	on of ethy	ne yields	
		increases the rate				A.	benzene	B.	metha	
				X and Y left after the		C.	ethene	D.	propa	ne
		attainment of equil	librium.		27	E. Whie	Ethane	a is used i	n tha ma	aufostums of
19.	Who	at is the formula of	endium a	allate if gallium (Ga)	27.		h of the followin hing powder?	g is used ii	n me mai	nuracture of
1).		vs an oxidation nu				A.	sulphur dioxi	de	B.	chlorine
	A.	NaGaO ₃ B.	Na,G			C.	hydrogen teti			
	C.	NaGa(OH) ₃	D. 2	NaGa (OH) ₄		D.	hydrogen sul			
	E	NaGaO		*		E	nitrogen diox			
20.				the atmosphere over a aded lead compounds,	28.		an suspected to b			

has	breath	carries	a sign	ifica
fina	l colou	r of the	solutio	n is.

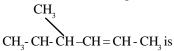
A. Pink C. Orange B.

D.

Purple Blue-black

E Green.

- 29. When pollen grains are suspended in water and viewed through a microscope, they appear to be in a state of constant but erratic motion. This is due to
 - convection currents A.
 - B. small changes in pressure
 - C. small changes in temperature
 - D. a chemical reaction between the pollen grains
 - E the bombardment of the pollen grains by molecules of water.
- 30. The energy change (H) for the reaction $CO_{(g)} + \frac{1}{2}O2_{(g)} \longrightarrow CO2_{(g)}$ is
 - -503.7 kJ A.
- B. $+503.7 \, kJ$
- C. $-282.9 \, kJ$
- D. $+282.9 \, kJ$
- E $+393.3 \, kJ$
- $(Hi(CO) = -110.4 \text{ kJ mol}^{-1}(Hi(CO_2) = -393 \text{ kJ mol}^{-1})$
- 31. The product formed on hydrolysis of


- H + HOCH, CH, CH

- 32. The neutralization reaction between NaOH solution and nitrogen (1V) oxide (NO₂) produces water and
 - NaNO, and NaNO, A.
 - NaNO₃ and HNO₃ B.
 - C. NaNO,
 - D. NaNO,
 - E NaN,O

- 33. The oxidation of CH- CH- C- O gives Н Н
 - A. 2-butanone
- 2-butanal
- C. butane
- B. D. butanoic acid
- 3-butanal.
- E
- 34. Tetraoxosulphate (V1) ions are finally tested using

CH,

- acidified silver nitrate A.
- B. acidified barium chloride
- C. lime - water
- D. dilute hydrochloric acid
- E acidified lead nitrate
- 35. The I.U.P.A.C name for the compound

- 2-methl-3-patene A.
- 4-methy-2-pentane B.
- C. 2-methl-2-penten
- D. 4-methyl-3-pentene
- 2-methyl-3-pentane E.
- 36. Mixing of aqueous solution of barium hydroxide and sodium tetraoxocarbonate(1V) yields a white precipitate of
 - A. barium oxide
 - B. sodium tetraoxocarbonate(1V)
 - C. sodium, oxide
 - D. sodium hydroxide
 - E. barium tetraoxocarbonate.
- 37. An organic compound decolorized acidified KMnC solution but failed to react with ammoniacal silver nitrate solution. The organic compound is likely to be.
 - a carbonxyllic acicd A.
 - B. an alkane
 - C. an alkene
 - D. an alkyne
 - E. an alkanone
- 38. Solid sodium hydroxide on exposure to air absorbs a gas and ultimately gives another alkaline substance with the molecular formula.
 - A. NaOH.H,O
- NaOH.N, B.
- C. Na,CO,
- D. NaHCO,
- E. NaNO,
- 39. Which of the following is the functional group of carboxylic acids?
 - A. -OH
 - B. >C=O
 - C. >C-OH
 - D.
 - E -C = N

40.			-	stances is the most	46.				e acid to an aqueous
		lant in the univer		A *			•	•	ed a yellow precipitate
	A.	Carbon	B.	Air					nate paper green. The
	C.	Water	D.	Oxygen		-	alline salt was prob	-	M. C
	E.	Hydrogen				A.	Na ₂ SO ₄	B.	Na ₂ S
		tion 41 and 42 are				C. E	NaS ₂ O ₃ .5H ₂ O NaHCO ₃	D.	NaCO ₃
				X was burnt in exces	477	TTP1		.1	
	, as pr	oducts. X does no	ot decolor	ourless grass, Y and Z ize bomine vapour; Y	47.	marga	arine is known as		version of an oil into
		-	-	lue colour with copper		A.	hydrogenation	B.	condensation
	(11) to	etraoxosulphate (V	71).			C. E	hydrolysis cracking	D.	dehydration
41.	Comp	ound X is					Ü		
	A.	an alkene			48.	An ac	queous solution of	an inor	ganic salt gave white
	B.	an alkane							aqueous NaOH (ii)
	C.	an alkyne							(III) with dilute HCI.
	D.	tetra chlorome	thane				aution present in th		
	E	Dichlorometha				A.	NH3 ₄ +	B.	Ca^{++}
						C.	N ⁺⁺	D.	Al^{+++}
42.	Yand	Z are respectivel	V.			E	Pb ⁺⁺		
	A.	CO, and NH ₃	B.	CO and NH ₃					
	C.	SO_2^2 and H_2O^3	D.	CO, and H,O	49.	Which	h of the following ro	oles does	s sodium chloride play
	E	SO_2^2 and NH_3		2 - 2 - 2 -			p preparation? It		The state of the s
		2 3				A.	reacts with glyc	erol	
43.	Whic	h of the following	compoun	ds is NOT the correct		B.	purifies the soa		
				metal is heated in air?		C.			position of the fat and
	A.	Calcium oxide	-			-	oil	г	
	B.	Sodium oxide				D.	separates the so	ap form	the glycerol
	C.	Copper (11) ox)		E	converts the fat		
	D.	Tri-iron tetrox							
	E	Aluminium ox			50.		function of sulphurer is to .	during	the vulcanization of
44.	The a	tomic number of	an eleme	nt whose caution, X2+,		A.		r the pol	lymerization of rubber
	has t			nic configuration is		В.	molecules	•	rmosetting tio thermo
	A.	16	B.	18			plastic polymer		Ü
	C. E.	20 24	D.	22		C.	from chains w	hich bi	nd rubber molecules
	Ľ	∠ /1				D.	together break down rub	har nol-	mar moloculo
45.				, another whiter solid		E.			h of rubber polymer.
	an alk	taline solution. Tl	he solutio						
	A.	NaOH	B.	KOH					
	C.	$Mg(OH)_2$	D.	$Zn(OH)_2$					
	E	Ca(OH) ₂							
				Chemis	try	1986	5		
1.	Then	novement of liquid	d molecul	es from the surface of					
1.		quid gaseous phas			3.				reacts with 5cm ³ of
	A.	Brownian mov		it is known as) to form 10cm^3 of a
	В.	Condensation				_	e gas. Which of the		ing is the most likely

- C. Evaporation
- D. Liquefaction

- $8.0\,\mathrm{g}$ A.
- B.
- C. $0.8\,\mathrm{g}$
- $4.0\,\mathrm{g}$ D. $0.4\,\mathrm{g}$

$$[G.M.V = 22.4 dm^3]$$

- A.
- B.
- HF + $N_2F_2 \rightarrow N_2HF_3$ $2HF + N_2F_2 \rightarrow 2NHF_2$ $2HF + N_2F_2 \rightarrow N_2H2F_4$ $4HF + 2N_2F_2 \rightarrow N_4HF_4$ C.

The number of atom chlorine present in 5.85 g of NaCI 4. is

 6.02×10^{22} A.

B. $5.85 \times 10_{\circ}$

C. 6.02×10^{23}

 5.85×10^{24} D.

[Na = 23, Cl = 35.5]

Avogadro's Number = 6.02×10^{23}]

5. How much of magnesium is required to react with 250cm³ of 0.5 M HCl?

> A. 0.3 g

B. $1.5\,\mathrm{g}$

C. 2.4g D. 3.0g

[Mg = 24]

6. 200cm3 of oxygen diffuse through a porous plug in 50 seconds. Hoe long will 80 cm3 of methane (CH4) take to diffuse through the same porous plug under the same conditions?

> A. 20 sec

B. 20 sec

C. 14 sec D. 7 sec

[C = 12, O = 16, H = 1]

7. The relationship between the velocity (U) of gas molecules and their relative molecule mass (M) is shown by the equation

 $\hat{\mathbf{U}} = (\mathbf{k}\mathbf{M}) \frac{1}{2}$ A

B. $\hat{\mathbf{U}} = (\mathbf{k}\mathbf{M})^2$

 $\hat{\mathbf{U}} = {}^{k}$ C.

 $\hat{\hat{\mathbf{U}}} = \binom{k}{m} \frac{1}{2}$ D

8. An element with atomic number twelve is likely to be

> electrovalent with a valency of 1 A.

> B. electrovalent with a valency of 2

C. covalent with a valency of 2

D. covalent with a valency of 4

9. Which of the following group of physical properties increases form left to right of the periodic table? 1 lonization energy 2 Atomic radius 3 Electronegativity 4 Electron affinity

A.

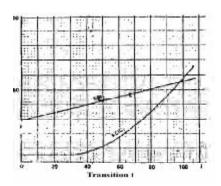
1 and 2

B. 1, 2 and 3

C. 3 and 4 D. 1, 2, 3 and 4

When 50 cm³ of a saturated solution of sugar (molar 10. mass 342.0 g) at 40°C was evaporated to dryness, 34.2 g dry of solid was obtained. The solubility of sugar of 40°C is

> A. 10.0 moles dm⁻³

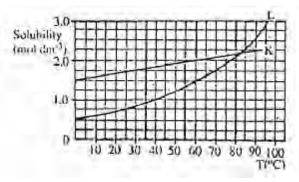

7.0 moles dm⁻³

B.

D.

C. 3.5 moles dm⁻³ 2.0 moles dm⁻³

11.


In the solubility curve above, water at 98oC is saturated with KCl impurity in the crystals formed when the solution is cooled to 30oC?

A. NaHSO₄, Ph<5

B. Na₂CO₃, Ph>8

C. $Na_{3}Cl$, Ph = 7

D. NaHCO₃, Ph <6

13. Which of the following is an acid salt?

NaHSO,

B.

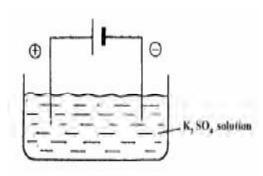
C. CH,CO,Na

A.

D. Na,S

14. Which of the following solution will conduct the least amount of electricity?

2.00 M aqueous solution of NaOH


B. 0.01 M aqueous solution of NaOH

C. 0.01 m aqueous solution of hexaonic acid

D. 0.01 M aqueous solution of sugar.

15.

16.

In the electrolysis of aqueous solution of K₂SO₄ in the above cell, which species migrate to the anode?

SO₄² and OH-A.

B.

K⁺ and SO²⁻

C. OH and H₃O

D. H₃O and K⁺

How many coulombs of electricity are passed through a solution in which 6.5 amperes are allowed to run for 1.0 hour?

3.90 x 10² coulombs A.

5.50 x 10³ coulombs B.

C. 6.54 x 10³ coulombs

D. 2.34 x10⁴ coulombs

17. Which of these represents a redox reaction?

> A. $AgNO_3 + NaCl \longrightarrow AgCl + NNO_3$

B. $H2s + Pb(NO_3) \rightarrow PbS + 2HNO_3$

C. $CaCO_3 \rightarrow CaO + CO_5$

D. $Zn + 2HC1 \longrightarrow ZnCI_2 + H_2$

18.	atom o	nany electrons are f Mn in the reaction + 4HC+ MnCl ₂ + 2	on	red in reducing one Cl ₂ 3	26.				e in a place that us e bound to contain	
	C.	4	D.	5		C. D.	CO, SO ₂ and CO and H ₂ S	SO ₃		
19.	with 20		ar HCl li	tion when neutralized berated 102 Joules of ization of NH ₄ OH +57.3 kJ mol ⁻¹ +51.0kJ mol ⁻¹	27.		ant because the deplete oxyg survival of ac	y. en which quatic orga	is necessary for t nisms is necessary for t	he
20.	the equ A. B. C. D.	The equilibrium The equilibrium The equilibrium There is no effe More ZnO _(s) is p	ZnO _(s) + is driver is driver ct produced	n to the right		C. D.	survival of actinuous acrease oth necessary for deplete other necessary for organisms.	quatic orga er gaseou survival c er gaseous for the su	nisms s species which a of aquatic organism s species which a urvival of aquat	nre ns ure tic
21.	The approximately oxyger A. C.	_	e of air B. D.	containing 10cm of 25 cm ³ 100 cm ³	28.		n of the followin n a higher oxide NO and H ₂ O CO and CO ₂ SO ₂ and NO		t further with oxyg	en
22.		action Mg + H ₂ O— presence of	→ MgO	+ H ₂ takes place only		D.	CO_2 and H_2O			
	A. excess Mg ribbon B. excess cold water C very hot water E steam				29.	were j	the course of an experiment, two gases X and Y ere produced. X turned wet lead ethanoate to black d Y bleached moist litmus paper. What are the ements(s) in each of the gases X and Y respectively? H and S;Cl			ck he
23.	When steam is passed through red hot carbon, which of the following are produced? A. Hydrogen and oxygen and carbon(1V) oxide					B. C. D.	H and O; Cl H and S;C an H and Cl;S a	nd O		
24	B. C. D.	Hydrogen a Hydrogen a	nd carbo nd trioxo	n (1V) oxide n (11) oxixde ocarbonate(1V) acid	30.	Which HCl? A. C.	n of the followin Na ₂ S CuS	g sulphides B. D.	s is insoluble in dilu ZnS FeS	ıte
24.		tively? Na2SO4, concer	hydros ntrated H	s an efflorescent, a scopic substance ₂ SO ₂ CaCl ₂ H ₂ O, concentrated	31.		ed to sunlight, t HCl O ₂		iter and subsequent lved is HOCl Cl ₂ O ₂	tly
	C. D.	Na,CO ₃ . 10H,O,	FeCl ₃ co SO ₄ , FeS	oncentrated H ₂ SO ₄ O ₄ .7H ₂ O, MgCl ₂	32.		n of the followin carbonate(1V) Fe	g metals do B.	es NOT form a stab	ole
25.	10.0 cr	n ³ of water with so	ap. The ti	obtained by titrating itration was repeated		C.	Zn	D.	Pb	
F. 1.		e same sample of v	g A	fter boiling	33.	and w	rater only. Where evolved which	Z is treate gives a y	ith NaOH to give seed with dilute HCl	, a
Final (c Initial (cm ³)	25.0 10.00	1	20.0 15.0		passir A. C.	ng into concentr NaHS NaS	ated H ₂ SO ₂ B. D.	Na ₂ SO ₃ NaHSO ₃	
	A.	tio of permanent to 1:5	B.	1:4	34.	Amm	onia gas is norm	ally dried w	zith	
	C.	4:1	D.	5:1	<i>.</i> -т.	Annin A. B. C. D.	concentrated quicklime anhydrous ca magnesium s	sulphuric	acid	

35.		are the values of x, y and z respectively in the	
	equat	on $xCu + yHNO_3 \rightarrow xCu(NO_3)_2 + 4H_2O + zNO$?s
	A.	4;1;2	
	B.	3;8;2	

C. 2;8;3 D. 8;3;2

36. The iron (111) oxide impurity in bauxite can be removed by

fractional crystallization in acid solution A.

B. dissolution in sodium hydroxide and filtration

C. extraction with concentrated ammonia and reprecipitation

D. electrolysis of molten mixture.

38. A white solid suspected to be lead trioxonirate (V), zinc trioxocarbonate(1V) of calcium trioxocarbonate (1V) was heated strongly. Its residue, which was yellow when hot and white when cold, is

> lead (11) oxide A. B. C. zinc oxide D.

calcium oxide lead nitrite

Which of the following compounds would give lilac 39. fame coloration and a white precipitate with acidified barium chloride solution?

> **KCl** A. C. K,SO

NaNO, B. D. CaSO,

40. How will a metal X, which reacts explosively with air and with dilute acids be best extracted from its ores?

Electrolysis of the solution of its salt A.

B. Decomposition of its oxide

C. Displacement from solution by an alkali metal

D. Electrolysis of fused salt

41. Which of the following is NOT correct for the named organic compound in each case?

> A. Butanoic acid solution gives effervescence with Na₂CO₂ solution

> Glucose when reacted with Na₂CrO₄ at 0°C will B. show immediate discharge of colour

> C. When but-2-ene is reacted with dilute solution of KmnO4 the purple colour of KMnO is discharge readily even at room temperature

> D. When butan-2-ol is boiled with Butanoic acid with a drop of concentrated H₂SO₄ a sweet smelling liquids is produced.

42. Which of the following is used as an anti-knock in automobile engines?

> Tetramethyl silane A.

B. Lead tetra-ethyl

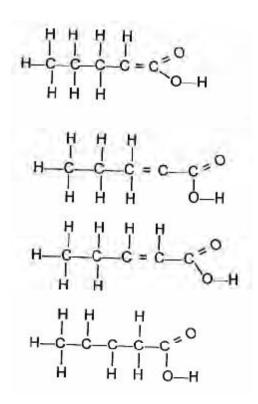
C. Glycerol

D. N-heptanes

43. What reaction takes place when palm-oil is added to potash and foams are observed?

> A. Neutralization

B. Saponification


C. Etherification

D. Salting-out 44. How many isomers can be formed from organic compounds with the formula C₂H₀O?

> A. C.

B. D. 5

45. Which of the structural formula for pent-2-enoic acid?

46. When ethanol is heated with excess concentrated sulphuric acid, the ethanol is

A. oxidized to ethene

B. polymerized to polyethene

C. dehydrated to ethene

D. dehydrated to ethyne.

47. Which of the following compounds is NOT formed by the action of chlorine on methane?

> CH,Cl A. C. CH,Cl,

C,H,Cl B. D. CHCl,

48. The general formula of an alkyl halide (where X represent the halide) is

> A. C. $C_nH_{2n}+_2X$

B. D.

49. Which of the following are made by the process of polymerization?

> Nylon and soap B. A. C. Soap and butane D.

Nylon and rubber Margarine and

Nylon

50. Starch can converted to ethyl alcohol by

> A. distillation C.

B. fermentation cracking.

isomerization D.

1.	A brand of link containing cobalt (11), copper (11) and
	irons can best be separated into its various components
	by.

A. fractional crystallization

B. fractional distillation

C. sublimation

D. chromatography.

2. Which of the following substances is a mixture?

Granulated sugar A.

B. Sea-water

Sodium chloride C.

D. Iron fillings

3. The number of molecules of carbon (1V) oxide produced when 10.0 g CaCO₂ is treated with 0.2 dm³ of 1 M HCl in the equation $CaCO_3 + 2HCI \longrightarrow CaCl_2 + H_2O + CO_2$ is

A. 1.00×10^{23}

B. 6.02×10^{23}

C. 6.02×10^{22}

6.02 x 10₂₃ D.

[Ca=40, O=16, C=12, $N_A = 6.02 \times 10^{23}$, H=1, Cl=35.5]

In the reaction $CaC_{2(s)} + 2H_2O_{\overline{(1)}} \rightarrow Ca (OH_{2(s)} + C_2H_{2(g)}$ 4. what is the mass of solid acetylene gas at S.T.P?

A. $3.8\,\mathrm{g}$ C. $2.0\,\mathrm{g}$ B. $2.9\,\mathrm{g}$ D $1.0\,\mathrm{g}$

 $[C = 12, Ca - 40, G.M.V = 22400 \text{ cm}^3]$

5. If the quality of oxygen occupying a 2.76 liter container at a pressure of 0.825 atmosphere and 300 K is reduced by one-half, what is the pressure exerted by the remaining gas?

1.650 atm A.

B. 0.825 atm

C. 0.413 atm D. 0.275 atm

6. Which of the following substances has the lowest vapour density?

B.

A. Ethanoic acid

Propanol

C. Dichlomethane D.

Ethanal [O = 16, Cl = 35.5, H = 1, C = 12]

7. If d represents the density of a gas and K is a constant, the rate of gaseous diffusion is related to the equation

A. r = kd

B. r = kd

C. d

 $r = k_1 d$ D.

8. An isotope has an atomic number of 17 and a mass number of 36. Which of the following gives the correct number of neutrons and protons in an atom of the isotope?

•	Neutrons	Protons
A.	53	17
B.	17	36
C.	19	17
D.	36	17

9. The atomic numbers of two elements X and Y are 12 and 9 respectively. The bond in the compound formed between the atoms of these two elements is.

> A. ionic

R convalent

C. neutral D. co-ordinate.

An element Z, contained 90% of 16 Z and 10% of 18 Z. 10. Its relative atomic mass is

A. 16.0 B. 16.2 17.8

C. 17.0 D.

11. The greater the difference in electronegativity between bonded atoms, the

> lower the polarity of the bond A.

B. higher the polarity of the bond

C weaker the bond

E higher the possibility of the substance formed being a molecule.

12. A stream of air was successively passed through three tubes X, Y, and Z containing a concentrated aqueous solution of KOH, red hot copper powder and fused calcium chloride respectively. What was the composition of gas emanating from tube Z?

> CO₂ and the inert gases A.

B. N₂, CO₂ and the inert gases

C. N, and the inert gases

D. Water vapour, N₂ and the inert gases.

13. In the purification of town water supply, alum is used principally to.

A. kill bacteria

B. control the pH of water

C. improve the taste of the water

D. coagulate small particles of mud.

14. Which of the following water samples will have the highest titer value wages titrated for the Ca²⁺ ions using soap solution?

> A. Permanently hard water after boiling

B. Temporarily hard water after boiling

C. Rain water stored in a glass jar for two years

Permanently hard water passed through D. permutit

15. Oil spillage in ponds and creeks can be cleaned up by

> burning off the oil layer A.

> B. spraying with detergent

C. dispersal with compressed air

D. spraying with hot water.

16. The solubility of Na₃AsO₄(H₂O)₁₂ is 38.9 g per 100 g H2O. What is the percentage of Na₃AsO₄ in the saturated solution?

A. 87.2% C. 19.1%

38.9% B.

13.7%

D.

[As = 75, Na = 23, O = 12, H = 1]

17. Which is the correct set results for tests conducted respectively on fresh lime and ethanol?

respectively on nesti time and emanor.								
Test	Fresh lime juice	Ethanol						
A. Add crystals of NaHCO ₃	Gas evolve	No gas evolved						
B. Test with methyl orange	Turns colourless	No change						
C. Taste	Bitter	Sour						
D. Add a piece of sodium	No gas evolved	H ₂ evolved						

- 18. In which of the following are the aqueous solutions of each of the substances correctly arranged in order of decreasing acidity?
 - Ethanoic acid, milk of magnesia, sodium chloride, hydrochloric acid and sodium hydroxide.
 - B. Ethanoic acid hydrochloric acid, milk of magnesiam sodium chloride and sodium, hydroxide.
 - C. Hydrochloric acid, ethanoid acid solution chloride, milk of magnesia and sodium hydroxide
 - D. Hydrochloric acid sodium hydroxide sodium chloride ethanoic acid and milk of magnesia
- 19. The basicity of tetraoxophosphate (v) acid is

A.	7
C.	4

5 3 D.

20. If 24.83 cm³ of 0.15 M NaOH is tritrated to its end point with 39.45 cm3 of HCl, what is the molarity of the HCl?

> B. $0.150 \, M$ A. 0.094 MC. D. $0.940\,{\rm M}$ 1.500 M

21. A quantity of electricity liberates 3.6 g of silver from its salt. What mass of aluminium will be liberated from its salt by the same quantity of electricity?

> $2.7\,\mathrm{g}$ B. $1.2\,\mathrm{g}$ Α C. 0.9 gD. 0.3 g

- 22. Which of the following statements is CORRECT if 1 Faraday of electricity is passed through 1 M CuSO solution for 1 minute?
 - The pH of the solution at the cathode A. decreases
 - The pH of the solution at the anode B. decreases
 - 1 mole of Cu will be liberated at the cathode C.
 - D. 60 moles of Cu will be liberated at the anode.
- 23. What mass of magnesium would be obtained by passing a current of 2 amperes for 2 hrs. 30mins through molten magnesium chloride?

A. $1.12\,\mathrm{g}$ B. $2.00\,\mathrm{g}$

C. 2.24 g D. $4.48\,\mathrm{g}$

[1 faraday = 96500 coulombs, Mg = 24]

In the reaction of $3\text{CuO} + 2\text{NH}_3 \longrightarrow 3\text{Cu} + 3\text{H}_2\text{O} + \text{N}_2$ 24. how many electrons are transferred for each mole to copper produced?

 4.0×10^{-23} A. C.

B. 3.0×10^{-23}

 1.2×10^{24}

 6.0×10^{24} D.

- 25. Z is a solid substance, which liberates carbon (1V) oxide on treatment with concentrated H2SO4, KnnO4. The solid substance, Z is
 - .A. sodium hydrogen trioxocarbonate(1V)

B. ethanoic acid

C. iron (11) trioxocarbonate (1V)

D. ethanedioc acid (oxalic acid)

26. 5 g of ammonium trioxonirate (V) on dissolution in water cooled its surrounding water and container by 1.6kJ. What is the heat of solution of NH₄NO₂?

> +51.4 kJ mol-1 A.

B. +25.6 kJ mol-1

C. +12.9 kJ mol-1

-6.4 kJ mol-1 D.

$$[N = 14, O = 16, H = 1]$$

27. Tetraoxosulphate (1V) acid is prepared using the chemical reaction $SO_{3(g)} + H_2O_{(1)} \rightarrow H_2SO_{4(1)}$. Given the heat of formation for $SO_{3(g)}$, $H_2O_{(1)}$ and $H_2SO_{4(1)}$ as -395kJ mol-1 –286 kJ mol-1 and –811 kJ mol-1 respectively is

> -1032 kJ A.

B. $-130 \, kJ$

C. +130kJ

D. $+1032 \, kJ$

28. The times taken for iodine to be liberated in the reaction between sodium thisosulphate and hydrochloric acid at various temperatures are as follows:

Temp°C	25	35	45
Time (seconds)	72	36	18

These results suggest that.

- A. for a 10° rise in temperature rate of reaction is doubled
- B. for a 10° rise in temperature rate of reaction is
- C. time taken for iodine to appear does not depend on temperature
- D. for a 10° rise in temperature, rate of reaction is tripled.
- 29. The reaction between sulphur (1V) oxide and oxygen is represented by the equilibrium reaction

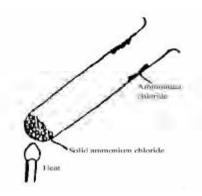
 $2SO_{2(g)}H + O_{2(g)} \longrightarrow 2SO_{3(g)}$. H = - 196 kJ. What factor would influence increased production $SO_{3(g)}$?

- A. Addition of a suitable catalyst
- B. Increase in the temperature of the reaction
- Decrease in the temperature of $SO_{2(x)}$ C.
- Decrease in the concentration of $SO_{2(g)}$ D.
- 30. Which of the following equations correctly represents the action of hot concentrated alkaline solution on chlorine?

A.

 $Cl_{2(g)} + 2OH \xrightarrow{\longrightarrow} OCl_{(q)} + Cl_{(q)} + H_2O_{(1)}$ $3Cl_2(g) + 6OH \xrightarrow{\longrightarrow} ClO_{3(aq)} + 5Cl_{(aq)} + 3H_2O_{(1)}$ $3Cl_{2(g)} + 6OH(aq) \xrightarrow{\longrightarrow} ClO_{3(s)} + 5Cl_{(aq)} + 3H_2O_{(1)}$ B. C.

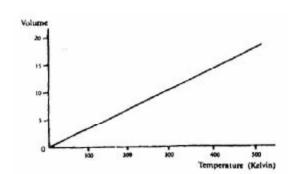
D. $3Cl2(g) + 6OH(aq) \rightarrow 5ClO3(aq) + Cl(aq)$


+3H2O₍₁₎

Magnesium ribbon was allowed to burn inside a given 31. gas P leaving a white solid residue Q. Addition of water to Q liberated a gas which produced dense white fumes with a drop of hydrochloric acid. The gas P was

A. nitrogen B. chlorine

C. oxygen D. sulphur (1V) oxide


32.	The best treatment for a student who accidentally poured concentrated tetraoxosulphate(V1) acid on his skin in the laboratory is to wash he skin with A. cold water B. sodium trioxocarbondioxide solution C. Iodine solution D. Sodium triocarbonate (1V) solution.	41. A.	Which of the following compounds will give a precipitate with an aqueous ammoniacal solution of copper (1) chloride? CH ₃ CH=CHCH ₃ B. CH ₃ C——CCH ₃ C. CH=C—CH ₂ CH ₃ D. CH ₂ =CH-CH-=CH ₂
33.	In which of the following pairs of elements is allotropy exhibited by each element? A. Phosphorus and hydrogen B. Oxygen and chlorine C. Sulphur and nitrogen D. Oxygen and sulphur.	42. 43.	The efficiency of petrol as a fuel in high compression inetrnal combustion engines improves with an increase in the amount of A. Branched chain alkanes B Straight chain alkanes C. Cycloalkanes D. Halogenated hydrocarbons A palm wine seller stoppered a bottle of his palm wine
34.	Which of the following gases can best be used for demonstrating the fountain experiment? (i) Nitrogen (ii) Ammonia (iii) Nitrogen (l)oxide (iv) Hydrogen chloride A. (ii) and (iii) B. (i) and (iii) C. (ii) and (iv) D. (ii) only.		in his stall and after a few hours the bottle represents the reaction that occurred? A. $C_6H_{12}O_6^{e_{12}VINES} \ge 2 C_2H_5OH + 2CO_{2(g)}$ B. $C_2H_5OH \rightarrow CH2 = CH2(G)) + H_2O$ C. $C_2H_5OH + dil H_2SO_4 \longrightarrow C_2H_5OSO_2OH$ D. $2C_6H_{12}O_6 \longrightarrow C_{12}H_{12}O_{13} + H_2O$
35.	 When calcium hydroxide us heated with ammonium tetraoxosulphate (V1), the gas given off may be collected by A. bubbling it through concentrated H₂SO₄. B. Bubbling it through water and then passing it through calcium oxide C. Passing it directly through calcium oxide D. Passing it directly through calcium chloride. 	44.45.	ethanol reacts with aqueous sodium mono-oxoio date(1) to gives a bright yellow solid with a characteristic smell. The products is A. trichlomethane B. ftriiodomethane C. iodoethane D. ethanal The most volatile fraction obtained from fractional
36.	Which of the following elements will form oxide which will dissolve both dilute HNO_3 and $NaOH$ solution to form salts? A. Cl. B. Mg C. Ag D. Mn		 distillation of crude petroleum contains A. butane propane and kerosene B. butane propane and petrol C. ethane, methane and benzene D. ethane methane and propane
37.	Stainless steel is an alloy of A. iron, carbon and silver B. ironm carbon and lead C. iron, carbon and chromium D. iron and carbon only.	46. 47.	Local black soap is made by boiling palm with liquid extract of ash. The function of the ash is to provide the A. acid B. ester of alkanoic acid C. alkali D. alkanol Synthetic rubber is made by polymerization of
38.	Alloys are best prepared by. A. high temperature are welding of the metals B. electrolysis using the major metallic component as cathode C. reducing a mixture of the oxides of the elements D. cooling a molten, mixture of the necessary	48.	 A. 2 methyl buta-1,3-diene B. 2 methl buta-1, 2 – diene C. 2 methyl buta – 1-ene D. 2 methyl buta – 2-ene Complete oxidation of propan – 1 – of gives A. propanal
39.	elements. Corrosion is exhibited by. A. iron only B. electropositive metals	49.	 B. propan-2-L C. propan-1-one D. propanoic acid When water drops are added to calcium carbide in a
40	C. metals below hydrogen in the electrochemical seriesD. all metals	4 9.	container and the gas produced is passed called and A. oxyethylene flame B. oxyhydrocarbon flame C. oxyacetylene flame
40.	Inspite of the electronic configuration, 1s ² 2s ₂ p2 ² , carbon is tetravalent because A. the electrons in both 2s and 2p orbital have equal	50.	D. oxymethane flame. The structure of benzoic acid is.
	 energy B. the electrons in both 2s and 2p orbital are equivalent C. both the 2s and 2p orbital hybridize D. the six orbital hybridize to four. 		~.3 ~.5 ~.5 ~.5 ~.5 ~.5 ~.5

- 1. In the experiment above, ammonium chloride crystals deposit on the walls of the tube is as a result of
 - Evaporation A.
 - B. Recrystallization
 - C. Sublimation
 - D. Fractional precipitation.
- The formula of the compound formed in a reaction 2. between a trivalent metal M and a tetravalent non-metal X is.
 - A. MX C. D. $M_{4}X_{2}$
- 3. 2.25 g of sample of an oxide of a copper. 2.50 g of another oxide of Copper on reduction also gave 2.0 g of copper. These results are in accordance with the law of
 - constant composition A.
 - B. conversation of matter
 - C. multiple proportions
 - D. definite proportions.
- One role of propane is mixed with five moles of oxygen. 4. The mixture is ignited and the propane burns completely. What is the volume of the products at soap?
 - $112.0\,dm^{3}$ A.
- B. $67.2\,\mathrm{dm^3}$ D.
- C. 56.0 dm³
- $44.8\,{\rm dm^3}$
- $[GM.V = 22.4 dm^3 mol^{-1}]$
- 5. 0.9 dm³ of a gas at s. t. p was subjected by means of a movable piston to two times the original pressure with the temperature being now kept at 364 K. What is the volume of the gas in dm³ at this pressure?
 - A. 2.0
- C. 6.0

6.

4.5 D. 8.3

Which of the gas laws does the above graph illustrate?

- A. **Boyle** B. Charles C. Graham D. Gay-lussac
- 7, An increase in temperature causes an increase in the pressure in the
 - A. average velocity of the molecules
 - B. number of collisions between the molecules
 - C. density of the molecules
 - D. free mean path between each molecules and other.
- 8. The forces holding naphthalene crystal together can be overcome when naphthalene is heated to a temperature of 354 K resulting in the crystals melting. These forces are known as.

A. coulombic B. ionic

C. covalent

- D. van der waals
- A metallic ion X²⁺ with an inert gas structure contain 18 9. electrons. How many protons are there in this ion?

A. 20 B. 18

C. 16

- D. 2
- 10. Which of the following physically properties decreases across the periodic table.

A. Ionization potential

B. Electron affinity

Electronegativity C.

Atomic radius D.

11. What are the possible oxidation numbers for an element if its atomic is 17?

> -1 and 7 A.

B. -1 and 6

-3 and 5

D. -2 and 6

12. The energy change accompanying the addition of an electron to a gaseous atom is called

> first ionization energy A.

B. second ionization energy

electron affinity C.

D. electronegativity

13. The molar ratio of oxygen to nitrogen in dissolved air is 2:1 whereas the ratio is 4:1 in atmospherics air because

> nitrogen is less soluble than oxygen A.

B. oxygen is heavier than nitrogen

C. nitrogen has a higher partial than pressure in

D. gases are hydrated in water.

14. An eruption polluted an environment with a gas suspected to H₂S, a poisonous gas. A rescue team should spray the environment with

> A. water

B. moist SO₂

acidified KmnO, and water C.

water, acidified KnnO, and oxygen. D.

15.	1.34 g of hydrated sodium tetraoxosulphate (V1) was
	heated to give an anhydrous salt weighing 0.71g. The
	formula of the hydrated salt.

Na,SO,.7H,O A.

B. Na₂SO₄.3H₂O

C. Na₂SO₄.2H₂O

D. Na,SO,.H,O.

[Na = 23, S = 32, O = 16, H = 1].

16. The ion that may be assumed to have negligible concentration in a sample of water that lathers readily with soap is

> Mg^{2+} A.

B. K^+

C. CO²⁻, D. HCO,

17. A substance S is isomorphous with another substance R. When a tiny crystal of R,

> S dissolves in the solution A.

B. Crystals of R are precipitated

C. There is no observable change

D. R and S react to the generate heat.

18. Which of the following dilute solutions has the lowest pH value?

> A. Calcium trioxocarbonate(1V)

В Sodium trioxocarbonate(1V)

D. hydrochloric acid

E. ethanoic acid

19. Which of the following in aqueous solution neutralize litmus?

> NH,Cl A.

B. Na,CO,

C. FeCl₃ D. NaCl.

20. What volume of a 0.1 M H,PO will be required to neutralize 45.0cm³ of a 0.2 M NaOH?

> $10.0\,{\rm cm}^3$ A.

20.0 cm³ B.

C. 27.0 cm³ D. 30.0cm3

21. Which of the following substances is a basic salt?

Na,CO,

B. Mg(OH)Cl

C. NaCHO,

K,SO₄.Al,(SO₄)₃.24H₂O. D.

22. Which of the following acts both as reducing and an oxidizing agent?

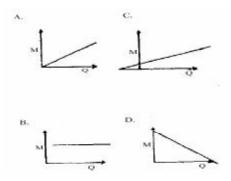
A.

B. SO,

Η, C. H,S

D. C

23. Which of the following reactions takes place in the cathode compartment during the electrolysis of copper (11) chloride solution?


> $Cu^{2+}_{(aq)} + 2e \longrightarrow Cu(s)$ $2Cl - 2e \longrightarrow Cl_2$ A.

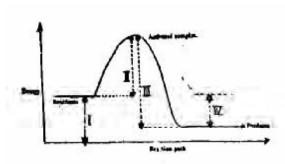
B.

C.

 $Cu(s) - 2e \longrightarrow Cu^{2+}_{(aq)}$ $Cu^{2+}_{(aq)} + 2Cl_{(aq)} \longrightarrow CuCl_{2(aq)}$ D.

24. The mass of a substance, M liberated at an electrode during electrolysis is proportional to the quantity of electricity. G passing through the electrolyte. This is represented graphically by.

25. A mixture of starch solution and potassium iodide was placed in a test tube. On adding dilute tetraoxosulphate (V1) acid and then K₂Cr₂O₃ solutions, a blue-black colour was produced. In this reaction, the


> iodine ion is oxidized A.

tetraoxosulphate(V1) acid acts as an oxidizing B.

C. starch has been oxidized

D. K₂Cr₂O₇ is oxidized.

26.

Which of the following statements is TRUE?

The dissolution of NaOH_(s) in water is A. endothermic

B. The heat of solution of NaOH_(s) is positive

C. The NaOH gains heat from the surroundings.

D. The heat of solution of NaOH_(s) is negative.

28. Which of the following will produced the greatest increase in the rate of the chemical reaction represented by the equation

 $Na_2S_2O_{3(aq)} + 2HCl_{(a} \longrightarrow {}_{q}2NaCl_{(aq)} + H_2O_{(1)} + SO_{2(g)} + S_{(s)}?$ decrease in temperature and an in increase in the concentration of the reactants

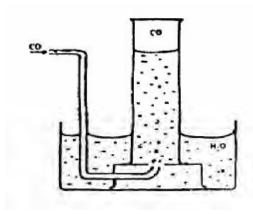
B. An increase in the temperature and a decrease in the concentration of the reactants

C. An increase in the temperature and an increase in the concentrations of the reactants

D. A decrease in the temperature and a decrease in the concentration of the reactants.

29. Which property of reversible reaction is affected by a catalyst?

A. heat content(enthalpy)


> B. energy of activation

C. free energy change

D. equilibrium position.

- Which of the following is used in fire extinguishers? 30.
 - Carbon (11) oxide A.
 - B. Carbon (1V) oxide
 - C. Sulphur (1V) oxide
 - D. Ammonia
- 31. When H₂S gas is passed into a solution of iron (111) chloride, the colour changes from yellow to green. This is because.
 - H₂S is reduced to S A.
 - Fe³⁺ ions are oxidized by H₂S B.
 - C. H₂S ions are oxidized by Fe³⁺
 - D. Fe³⁺ ions are reduced to Fe³⁺ ions

Carbon (11) oxide may be collected as shown above because it

- A. is heavier than air
- B. is less dense than air
- C. is insoluble in water
- D. burns in oxygen to form carbon(1V)oxide.
- 33. In the reaction $C_5H_{10}O_{5(s)} \rightarrow 6C_{(s)} + 5H_2O$ concentrated H₂SO₄ is acting as
 - a reducing agent A.
 - B. an oxidizing agent
 - C. a dehydrating agent
 - D. a catalyst
- 34. Suitable regents for the laboratory preparation of nitrogen are
 - A. sodium trioxonirate (lll) and ammonium chloride
 - B. sodium trioxonirate(V) and ammonium chloride
 - C. sodium chloride and ammonium trioxonirate
 - D. sodium chloride and ammonium trioxonirate(Ill)
- 35. The thermal decomposition of copper (ll) trioxonirate (V) yields copper (ll) oxide, oxygen and
 - A. nitrogen (ll) oxide
 - B. nitrogen(ll) oxide
 - C. nitrogen (IV) oxide
 - D. nitrogen
- 36. Chlorine is produced commercially by
 - electrolysis of dilute hydrochloric acid A.
 - B. electrolysis of brine
 - C. neutralization of hydrogen chlorine
 - D. heating potassium trioxochlorate(V)

- 37. Which of the following is used in the manufacture of glass?
 - A. Sodium chlorine
 - B. Sodium trioxocarbonate (IV)
 - C. Sodium tetraoxosulphate (VI)
 - D. Sodium trioxonirate (V)
- 38. Aluminium is extracted commercially from its ore by
 - A. heating aluminium oxide with coke in a furnace
 - B. the electrolysis of fused aluminium oxide in cryolite
 - C. treating cryolite with sodium hydroxide solution under pressure
 - D. heating sodium aluminium silicate to a high temperature.
- 39. Given the reactions

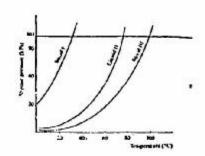
$$\begin{array}{c} \text{(i) Fe}_{\text{(s)}} + \text{(NO3)}_{\text{2(aq)}} & \xrightarrow{} \text{Fe(NO}_{\text{3}})_{\text{2(aq)}} + X_{\text{(s)}} \\ \text{(ii) H2}_{\text{(g)}} + \text{XO}_{\text{(s)}} & \xrightarrow{} X_{\text{(s)}} + \underset{}{\text{H}_{2}}\text{O}_{\text{(g)}}, X \text{ is likely to be.} \end{array}$$

- A. copper zinc
- C. calcium D. lead.
- 40. Crude copper can be purified by the electrolysis of CuSO4_(aq) if
 - A. platinum electrodes are used
 - B. the crude copper is made the anode of the cell
 - C. the crude copper is made the cathode of the
 - D. crude copper electrodes are used.

- A. 2 – methylbutanoic acid
- B. 2 - methyl - -hydrosyketone
- C. 2 - methyl - - hydroxyl baldheaded
- D. 2 – methylpentanoic acid
- 43. Alkanoates are formed by the reaction of alkanoic acids with
 - alkyl halides A. C. ethers
- B. alkanols D. sodium
- 44. The acidic hydrogen in the compound

H—C= C—CH=CH—CH₃ is the hydrogen attached to carbon number

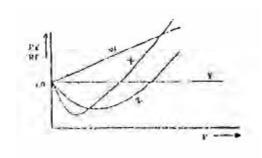
- 5 B. 4 A. C. 3 D. 2
- The four classes of hydrocarbons are 45.
 - A. ethane, ethene ethyne and benzene
 - B. alkanes, alkenesm alkynes and aromatics
 - C. alkanes, alkenes, alkynes and benzene
 - methane, ethane, propane and butane D.
- Alkanes $\frac{400-7007}{\text{catalys}}$ smaller + alkanes +hydrogen. The above reaction is known as 46.
 - Photolysis B. Cracking A.
 - C. D. Reforming. Isomerization


- In the reaction $2(C_5H_{10}O_5)$ n + nH₂O $\xrightarrow{\text{diastaşe}}$ nC₁₂H₂₂O₁₁ 47. diastase is functioning as
 - A. a dehydrating agent
 - B. a reducing agent
 - C. an oxidizing agent
 - D. a catalyst.
- 48. 48. which of the following compounds has the highest boiling point?
 - CH, CH, CH, CH, OH A.
 - CH, CH, CH, CHO B.
 - C. CH, CH2 CH, CH,
 - CH, CH, OCH, CH, D.

- 49. Detergents have the general formula
 - A. R(CH,)NOH
 - B. RSO, Na+
 - C. RCO, Na+
 - D. RCO₂H
- 50. What process would coal undergo to give coal gas, coal tar, ammoniac liquor and coke?
 - steam distillation A.
 - B. Destructive distillation
 - C. Liquefaction,
 - D. Hydrolysis.

8.

- 1. Which of the following would support the conclusion that a solid sample is mixture?
 - The solid can be ground to a fine powder A.
 - B. The density of the solid is 2.25 g dm³
 - C. The solid has a melting range of 300°C to 375°C.
 - The solid of the moisture from the D. atmosphere.
- 2. The molar of carbon to hydrogen of volatile liquid compound is 1:2. 0.12 g of the liquid evaporation at s.t.p gave 32 cm3 of vapour. The molecular formula of the liquids is
 - A. C_3H_6 C5H10 \mathbf{C}
- B. D.
- $C_{4}H_{8}$ $C_{\epsilon}H_{12}$
- [GM.V = 22.4DM3, C=12, H=1]


3.

It can be deduced from the vapour of pressure curves above that.

- A. liquid has the highest boiling point
- B. liquid has the highest boiling point
- C. liquid III has the highest boiling point
- liquid lll has the lowest boiling point. D.
- 4. 20.00 cm3 of a solution containing 0.53 g of anhydrous Na₂CO₂ in 100 cm3 requires 25.00 cm3 of H₂SO, for complete neutralization. The concentration of the acid solution in moles per dm3 is
 - 0.02 A.
- В 0.04
- 0.06
- D. 0.08
- [H=1, C=12, 0=16, Na=23, S=32]

- 5. The minimum volume of oxygen required for the complete combustion of mixture of 10cm3 of CO and 15 cm3 of H₂ is
 - 25.0 cm³ A.
 - В 12.5 cm³
 - C $10.0\,{\rm cm}^3$
 - D $5.0\,\mathrm{cm}^3$
- 6. What is the partial pressure of hydrogen gas collected over water at standard atmospheric pressure and 25oC if the saturation vapour pressure of water is 23 mm Hg at that temperature?.
 - A. 737 mm Hg
- 763 mm Hg B.
- C. 777 mm Hg
- D. 737 mm Hg
- 7. The atomic radius Li, Na and K are 1:33 Am 1.54A and 1.96A respectively. Which of the following explain this gradation in atomic radius?
 - Electropositivity decreases from Li to Na to K A.
 - Electronegativity decreases from Li to Na to B.
 - C. The number of electron shells increase from Li to Ma to K
 - D. The elements are in the same period.

Which of the curves in the above graph illustrates the behaviors of an ideal gas?

- A. W Y
- B. X Z
- C.
- D.

9.	Elements X and Y have electronic configurations
	1s ² 2s ² 2p ⁴ and 1s ² 2s ² 2p ⁶ 3s ² 3p ¹ respectively. When they
	combine, the formula of the compound formed is

A. XY C. X₂Y₃ B. YX D. Y₂X

The atomic number of cesium is 55 and its atomic mass is 133. The nucleus of cesium atom therefore contains

A. 78 protons and 55 electrons

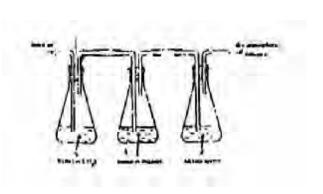
B. 55 protons and 78 neutrons

C. 55 neutrons and 78 electrons

D. 78 neutron and 55 neutrons

11. Four elements P,Q,R and S have atomic numbers of 4, 10, 12, and 14 respectively. Which of these elements is a noble gas?

A. P C. R B. Q D. S


12. How many valence electrons are contained in the element represented by ³¹₁₅P?

A. 3 C. 15 B. 5

D. 31

13.

10.

In the above set up, substances X and Y are respectively.

A. Lime water and copper (ll) tetraoxosulphate (Vl)

B. Potassium trioxocarbonate(IV) and alkaline prygallol

C. Potassium hydroxide and alkaline pyrogallo

D. Potassium trioxocarbonate (IV) and concerntrate tetraoxosulphate (VI) aid

14. The gaseous pollutant sulphur (IV) oxide is most likely to be detected in fairly reasonable quantities in the area around a plant for the

A. extraction of aluminium from bauxite

B. production of margarine

C. smelting of copper

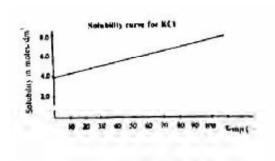
D. production of chlorine from brine

 Calcium hydroxide is added in the treatment of town water supply to

A. kill bacteria in the water

B. facilitate coagulation of organic particles

C. facilitate sedimentation


D. improve the tase of the water.

16. A hydrated salt of formula MSO₄·XH₂O contains 45.3% by mass of the water of crystallization.

Calculate the value of X.

17

A. 3 B. 5 C. 7 D. 10 [M=56, S=32, O=16, H=1]

If the graph above 1 dm³ of a saturated solution of HCI is cooled from 80°C, the mass of crystals deposited will be.

A. 7.45 g C. 74.50 g B. 14.90 g

D. 149.00 g [K = 39, Cl= 35.5]

18. Using 50cm3 of 1 M potassium hydroxide and 100cm3 of 1M tetraoxosulphate(VI) acid, calculate the respective volumes in cm3 of bade and acid 100 cm3 of base and acid that would be required to produce the maximum amount of potassium tetraoxosulphate(VI)

A. 50,50 C. 50,25

B. 25,50 D. 25,25

[K = 39, S = 32, O = 16, H = 1]

19. A solution of calcium bromide contains 20 g dm³
What is the molarity of the solution with respect to calcium bromide and bromide ions?

A. 0.1,0.1 C. 0.1,0.05 B. 0.1,0.2 D. 0.05,0.1

[Ca = 40, Br = 80]

20. The substance of ZnO dissolves in sodium hydroxide solution and mineral acid solution to gives soluble products in each case. ZnO is therefore referred to as.

A. an allotropic acid

B. an atmopheric oxide

C. a peroxide

D. a dioxide.

21. An acid its conjugate base.

A. can neutralize each other to form a salt

B. differ only by a proton

C. differ only by the opposite charges they carry

D. are always neutral substances

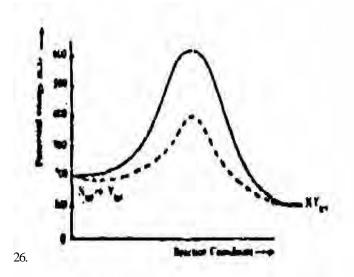
22. The same current is passed for the same time through solutions of AgNO3 and CuSO4 connected in series. How much silver will be deposited if 1.0 g of copper is produced?

A. 1.7 g

B. 3.4 g

C. 6.8 g

D. 13.6 g


[Cu = 63.5, S = 32, O = 16M Ag = 108, N = 14]

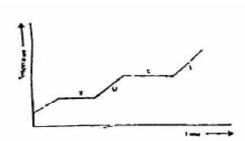
- 23. What is discharged at the cathode during the electrolysis of copper (ll) tetraoxosulphate (Vl) solution?
 - Cu2+ only A.
- В. H+ only

- C.
- Cu2, and H+
- D. Cu2+ and SO2-
- 24. An element, Z forms an anion whose formula is $[Z(CN)_{\epsilon}]^{y}$. If has an oxidation number of +2, what is the value of y?
 - A.
- B.
- -2 C. -4
- D. **-5**
- 25. Which of the reaction is NOT an example of a redox reaction?

$$\begin{array}{ccc} \text{I Fe} + 2\text{Ag}^+ & \longrightarrow & \text{Fe}^{2+} + 2\text{Ag} + \\ \text{II 2H}_2\text{S} + \text{SO}_2 & \longrightarrow & 2\text{H}_2\text{O} + 3\text{S} \\ \text{III N}_2 + \text{O}_2 & \longrightarrow & 2\text{NO} \\ \text{IV CaCO}_3 & \longrightarrow & \text{CaO} + \text{CO}_2 \end{array}$$

- I, II, III A. C.
- II and III B.
- III and IV D. IV only.

The above diagram gives the potential energy profile of the catalyzed uncatalysed reactions of


XY(g) . Deduce the respective $X(g) + Y(g) \rightarrow$ activation energies in kJ of the catalyzed and uncatalysed reverse reactions.

$$XY(g) + X(g) \longrightarrow X(g) + Y(g)$$

- A. 300,500
- B. 500,300
- C. -300, -500
- D. -5000.
- 27. The combustion of ethene, C2H2, is given by the equation $C_2H_4 \rightarrow 2CO_2 + 2H_2O$; H=-1428 kJ. If the molar heats of formation of water and carbon (1) oxide are -286kJ

- and -396 kJ respectively. Calculate the molar heat of formation of ethane in kJ.
- -2792 A.
- +2792 B.
- C. -64
- D. +64
- $CO(g) + H_2O \longrightarrow CO_2(g) + H_2(g)$ H = -41000 J. Which 28. of the following factors favour the formation of hydrogen in the above reaction? I high pressure II low pressure III high temperature IV use of excess steam
 - I, III, and IV A.
- B. III only
- C. II, III and I
- D. Iv only.

29.

- The above graph shows a typical heating curve from the solid phase through the liquid phase to the gaseous phase of a substance. What part of the curve shows solid and liquid in equilibrium?
- Т A.
- B. U
- C. X
- D. Y
- 30. Which of the following represents the balanced equation for the reaction of copper with concentrated trioxonirate (V) acid?
 - A.
 - $\begin{array}{l} 2NHO_{3(aq)} \longrightarrow Cu(NO_3)_{2(aq)} + H_{2(g)} \\ Cu_{(s)} + 4HNO_3 \longrightarrow Cu(NO_3)_{2(aq)} + 2H_2O_{(l)} + \end{array}$ B.
 - $2NO_{2(g)}$ $3Cu_{(s)} + 8HNO_{3(aq)} \rightarrow 3Cu(NO_3)_{2(aq)} + 4H_2O_{(I)}$ C.
 - $+2NO_{(g)}$ $3Cu_{(s)} + 4 HNO_{3(aq)} \rightarrow 3Cu(NO_3)_{2(aq)} + 2H_2O_{(l)} +$ D.
- 31. The catalyst used in the contact process for the manufacture of tetraoxosulphate(VI) acid is
- Manganese (IV) oxide A.
 - B. Manganese (ll) tetraoxosulphate (lV)
 - C. Vanadium (V) oxide
 - D. Iron metal
- 32. Some products of destructive distillation of coal are
 - carbon (iV) oxide and ethanoic acid A.
 - B. trioxocarbonate (IV) acid and methanoic acid
 - C. producer gas and water gas
 - D. coke and ammonia liquor
- 33. Gunpowder is made from charcoal, sulphur and potassium trioxonirate (V). The salt in the mixture performs the function of
 - A. an oxidant
- a reductant B.
- C. a solvent
- D. a catalyst

Which of the following reaction is (are) feasible? 34.

35. Bleaching powder, CaOCl2.H2O, deteriorates on exposure to air because

> it loses its water of crystallization A.

B. atmospheric nitrogen displaces chlorine from

C. carbon (IV) oxide of the atmosphere displaces chlorine from it

D. bleaching agents should be stored in solution

36. The product of the thermal decomposition of ammonium trioxonirate (V) are.

> A. NO, and oxygen

> B. NH, and oxygen

C. nitrogen and water

D. N₂O and water.

37. The scale of a chemical balance is made of iron plate and coated with copper electrolytically because.

> A. iron is less susceptible to corrosion than copper

B. copper is less susceptible corrosion as ion

copper is less susceptible to corrosion than C.

D. copper and ion are equally susceptible to corrosion.

38. A metal is extracted for, its ore by the electrolysis of tits molten chlorine and it displace lead from lead (ll) trioxonirate(V) solution. The metal is

> copper B. aluminium A. C. D. sodium zinc

39. Mortar is NOT used for under-water construction because.

> A. It hardens by loss of water

B. Its hardening does not depent upon evaporation

D. It requires concrete to harden

It will be washed away by the flow of water.

40. Which of the following is NOT involved in the extraction of metals from their ores?

> reduction with carbon A.

B. reduction with other metals

C. reduction by electrolysis

D. oxidation with oxidizing agent.

41 Which of the following compounds is an isomer of the compound.

C.
$$CH-CH_2-GH-CH_3$$

 C_2H_5

D. CH₃-CH₁-CH₃-CH₃ CH,

42. When excess chlorine is mixed with ethene at room temperature, the product is

> A. 1,2 – dichloroethane B. 1.2 – dichloroethene C. 1. 1- dichloroethane D. 1. 1- dichloroethene.

43. Vulcanization of rubber is a process by which

> Isoprene units are joined to produce rubber A.

B. Rubber latex is coagulated

C. Sulphur is chemically combined in the rubber

D. Water is removed from the rubber.

44. The reaction between ethanoic acid and sodium hydroxide is an example of

A. esterification B. neutralization C. hydrosylation D. hydrolysis

45. The bond which joins two ethanoic acid molecules in the liquid state is

> a covalent bond A.

B. an ionic bond

C. a dative covalent bond

D. a hydrogen bond

46. The alkaline hydrolysis of fats and oils produces soap and

> Α. propane 1, 1, 3-triol

B. propane - 1, 3, 3-triol

C. propane-1-2-2-triol

D. propane-1-2-3-triol

47. which of the following is NOT a monomer?

B. $CH_{\lambda} = CH_{\lambda}$

D. $CH_2 = CHC1$

What is the IUPAC name for the compound 48.

A.

1-chloro-2-methylprop-2, 3-ene

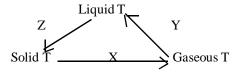
B. 1-chloro-2-methlprop-2-ene

C. 3-chloro-2-methylprop-1-ene

D.

3-chloro-2-methyprop-1,2-ene

49. The gas responsible for most of the fatal explosion in coal mines is


> butane B. A. ethene

C. ethane D. methane

- 50. Three liquids X,Y and Z containing only hydrogen and carbon were burnt on a spoon, X and Y burnt with sooty flames while Z did not. Y is able to discharge the colour of bromine water whereas X and Z cannot. Which of the liquids would be aromatic in nature?
 - X and Z A.
- B. Y
- C. X
- 7. D.

[G.M.V at s.t.p = $22.40 \,\mathrm{dm^3}$]

- 1. Which of the following is a physical change?
 - A. The bubbling of chlorine into water
 - B. The bubbling of chlorine into jar containing hydrogen
 - C. The dissolution of sodium chlorine in water
 - D. The passing of steam over heated iron.
- 2. Changes in the physical states of chemical substances T are shown in the scheme below.

The letters X, Y and Z respectively represent

- A. sublimation, condensation and freezing
- B. sublimation, vaporization and solidification
- C. freezing, condensation and sublimation
- D. evaporation, liquefaction and sublimation.
- In the reaction: $SnO_2 + 2C \longrightarrow Sn + 2CO$ the mass of coke 3. containing 80% carbon required to reduce 0.032 kg of pure tin oxide is
 - $0.40 \, \text{kg}$ A. C.
- B. $0.20\,\mathrm{kg}$
- D. $0.06 \,\mathrm{kg}$ $0.40\,\mathrm{g}$

[Sn = 119, O = 16, C = 12]

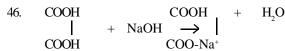
- The Avogadro's number of 24 of magnesium is same as 4. that of
 - A. 1 g of hydrogen molecules
 - B. 16 g of oxygen molecules
 - C. 32 g of oxygen molecules
 - 35.5 of chlorine molecules.
- 5. If a gas occupies a container of volume 146 cm3 at 18°C and 0.971 atm, its volume on cm3 at s.t.p is
 - A. 133
- B. 146
- C. 266
- D. 292
- The volume occupied by 1.58 g of gas s.t.p is 500 cm³. 6. What is the relative molecule mass of the gas?
 - A. 28 C. 344

B. 32 D. 71

- 7. Equal volumes of CO, SO, NO, and H,S, were released into a room at the same point and time. Which of the following gives the order of the room?
 - CO2, SO2, NO, H2S, A.
 - B. SO, NO, H,S, CO
 - C. CO, H,S, SO, NO,
 - D. CO, H,S, NO, SO,

[S = 32, C=12, 0=16, N=14, H=1]

- A basic postulate of the kinetic theory of gases is that the molecules of a gas move in straight lines between collisions. This implies that.
 - collisions are perfectly elastics A.
 - B. forces of repulsion exist
 - C. forces of repulsion and attraction are in equilibrium
 - D. collisions are inelastic.


		P	Q	R	S	
9.	Proton	13	16	17	19	
	Electron	13	16	17	19	
	Neutron	14	16	35	20	

Which of the four atoms P,Q,R and S in the above data can be described by the following properties: relative atomic mass is greater than 30 but less than 40; it has an odd atomic number and forms a unipositive ion in solution?

- A. P C. R
- S D.
- 10. Which of the following terms indicates the number of bonds that can be formed by atom?
 - A. Oxidation number
 - B. Valence
 - C. Atomic number
 - D. Electronegativity.
- $X_{(g)}$ \longrightarrow $X_{(g)}$. The type of energy involved in the 11. above transformation is
 - A. ionization energy
 - B. sublimation energy
 - C. lattice energy
 - D. electron affinity

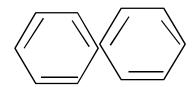
12.	Chlorine, consisting of two isotope of mass numbers 35 and 37, has an atomic of 35.5. The relative abundance			20.		s concentration o ion of pH 4.398?	of H ⁺ ions i	n moles j	per dm³ of a	
	of the is A. C.	sotope of mass number 20 50	mber 37 i B. D.	is. 25 75		A. C.	4.0×10^{-5} 4.0×10^{-3}	B. D.	0.4 x 1 0.4 x 1	
13.				Impurity was passed	21.		t volume of 11.0 M tain 1 dm ³ of 0.05		ric acid m	nust be dilute
				ntil all the H2S had		A.	$0.05\mathrm{dm^3}$		B.	$0.10{\rm dm^3}$
	reacted.	The precipitate or the equat	of PbS wa tion: Pb()	s found weight 5.02 NO_3 ₂ + H2O '! PbS		C.	$0.55\mathrm{dm^3}$		D.	11.0 dm ³
	sulphid	es in the air is.		olume of hydrogen	22.	conn	.8 g of silver is d ected in series v	vith a cop		
	A.	50.2	B.	47.0			ne of oxygen liber	rated is		
	C.	4.70	D.	0.47		A.	$0.56\mathrm{dm^3}$		В.	$5.50\mathrm{dm^3}$
		[Pb = 207, S =	23, GM V	$V \text{ at s.t.p} = 22.4 \text{ dm}_3$		C.	$11.20\mathrm{dm^3}$ $\mathrm{dm^3}$		D.	22.40
14.				0 g was placed on a pink sold was found			[Ag = 108, Cu	= 64, GMV	V at s.t.p =	= 22.40 dm ³].
	to weigl	ht 5.5 g. It can be	inferred	that substance T	23.	0.1 f	araday of electric	city deposi	ted 2.95	g of nickel
	A.	is deliquescent				durin	g electrolysis is	an aqueou	s solution	n. Calculate
	B.	is hydroscopic					umber of moles of	nickel tha	t will Be	deposited by
	C.		iles of wa	ter of crystallization			ıraday			
	D.	is efflorescent				A.	0.20		B.	0.30
15.	The eff	fluent of an ind	ustrial 1	olant used ins the		C. [Ni =	0.034		D.	5.87
				ne, with a flowing		[141—	36.7]			
		cathode may con			24.	Cr2O	$0^{2} + 6Fe^{2} + 14H^{+}$	\rightarrow 2Cr ³⁺	$+6Fe^{3+}+$	7H ₂ O. In the
	A.	oxygen					e chromium chang			2
	B.	hydrogen				A.	+7 to +3		B.	+6 to +3
	C. D.	mercury (ll) chlo				C.	+5 to +3		D.	-2 to+3
	D.	hydrogen chlori	ue		25.	In th	a reaction 10-	51- + 6U+	. 21	. 2∐ () tha
16.	The sol	ubility in moles	per dm ³	of 20 g of CuSO ₄	23.		e reaction $10_{3} + 3$ zing agent is	31 + 0H	\rightarrow 31 ₂	+ 3H ₂ O, the
		ed in 100 g of wate				A.	H ⁺	В.	1-	
	A.	0.13	B.	0.25		C.	10-3	D.	1,	
	C.	1.25	D.	2.00			3		2	
17	Cmala	agnaista of	[Cu=6]	3.5, S = 32, O = 16	26.	-822	$_{3(s)} + 2Al \longrightarrow Al_2O$ kJ mol-1 respecti	$O_3 + 2Fe_{(s)}$ at vely, the ex	re–16701 nthalpy c	kJ mol-1 and hange in kJ
17.	A.	consists of solid particles di	isparsad i	n liquid			ne reason is		D	. 0.40
	B.	solid particles di				A. C.	+2492		B.	+848
	C.	gas or liquid par				C.	-848		D.	-2492
	D.	liquid particles of			27.	Iron	galvanized with z	zinc cathol	ically pro	otected from
18.	NaC ₂ O ₄	+ CaCl → CaC	$O_4 + 2Na$	Cl. Given a solution		corro	osion. This is because has a more po	ause		
				g of water at room			ron			
	_			um volume of 0.1 M		B. z	zinc has a less po	sitive oxic	dation po	tential than
				e maximum calcium		i	ron			
		using the above e	equation.				ooth have the sam		n potentia	al
	A.	$1.40 \times 10^2 \mathrm{dm}^3$				D. z	zinc is harder than	iron.		
	B. C.	$1.40 \times 10^2 \text{ cm}^3$ $1.40 \times 10^{-2} \text{ dm}^3$			20	****	1 64 611 :		.11	
	D.	$1.40 \times 10^{-2} \text{ cm}^3$			28.		ch of the following e dtrioxonitrate (V		will react	t faster with
	2.	17.0.11.10				A.	5 g of lumps of		t 25°C	
19.	2.0 g of	monobasic acid v	was made	e up to 250 cm ³ with		В.	5 g of powered			
	distilled	water. 25.00 cm ³	of this sol	ution required 20.00		C.	5 g of lumps of			
				plete neutralization.		D.	5 g of powered			
		lar mass of the ac		4.40			_	3		
	A.	200 g	B.	160 g	29.	In the	e reaction,			
	C.	100 g	D.	50 g		$2Hl_{(g)}$	$H_{2(g)} + I_2(g),$	$\triangle H = 10$	kJ;	
							oncentration of io	dine in the	equilibri	um mixture
							be increased by	00011#0		
						A.	raising the pr	CSSUIE		

	B.	raising the temperature		
	C.	adding the temperature	39.	To make coloured glasses, small quantities of oxides of
	D.	lowering the pressure		metals which form coloured silicates are often added to
				the reaction mixture consisting of Na ₂ CO ₃ and SO ₂ . Such
30.		of the following gases can be collected by		a metal is
	_	d displacement of air?		A. potassium B. barium
	A.	NO B. H ₂		C. zinc D. copper
	C.	NH_3 D. Cl_2	40	Which of the Callerian comment of the comment
31.	The br	own fumes given off when trioxonirate (V) acid	40.	Which of the following compounds gives a yellow residue when heated and also reacts with aqueous
31.	consist	<u> </u>		sodium hydroxide to give a white gelatinous precipitate
	A.			soluble in excess sodium hydroxide solution.
	C.	NO_2 and O_2 B. H_2O and NO_2 NO_2 , O_2 and H_2O D. NO_2 and H_2O		A. (NH ₄) ₂ CO ₃ B. ZnCO ₃
	C.			C. $Al_2(SO_4)_3$ D. $PbCO_3$
32.	Which	of the following tests will completely identify		2(4/3
		e of sulphur (IV) oxide, hydrogen, carbon (IV)	41.	A cycloalkane with molecular formula C ₅ H ₁₀ has
		and nitrogen (ll) oxixde?		A. one isomer B. two isomers
	A.	pass each gas into water and test with blue		C. three isomers D. four isomers
		litmus pare		
	B.	pass each gas into lime water	42.	The structure of cis-2butene is
	C.	expose each gas to atmospheric air		A. CH ₃ -CH=CH-CH ₃
	D.	passs each gas to concentrated	-	B CH, CH,
		tetraoxosulphate(VI) acid.		n. 013
				γ- \ .
33.		Haber process for the manufacture of ammonia,		н
		alyst commonly used is finely divided.		C. CH ₂ H
	A. C.	vanadium B. platinum		Ç = Ç
	С.	iron D. copper		н́ сн,
34.	A meta	allic oxide which reacts with both HCl and NaOH		D. CH ₃ CH ₃
JT.		e salt and water only can be classified as		c = c
	A.	an acidic oxide		н сн
	В.	an atmospheric oxide		000 0000 * 0
	C.	a neutral oxide		
	D.	an atmospheric oxide	43.	What is the IUPAC name for the hydrocarbon
		-		CH ₃
35.		of the following metals will liberate hydrogen		
		team or dilute acid?		CH_3 — $C = CH$ — CH — CH_3
	A.	copper B. iron		I
	C.	lead D. mercury		$\mathrm{CH}_{_{2}}$
36.	Cool f	me should not be used in mosulty youtileted moons		CII
<i>5</i> 0.	becaus	re should not be used in poorly ventilated rooms		CH_3 A. 2-ethyl-4-methylpent-2-ene
	A.	of the accumulation of CO ₂ which cause deep		B. 3,5-dimenthylhex-3-ene
	Λ.	sleep		C. 2,4-dimenthylhex-3-ene
	B.	it is usually too hot		D. 2-methyl-4-ethylpent-3-ene
	C.	of the accumulation of CO which causes		b. 2 memyr remyrpont 5 ene
	C.	suffocation	44.	$CH_3 \equiv CH \longrightarrow P$. Compound P, in the above reaction, is.
	D.	it removes most of the gases in the room		one of the compound of the control o
		č		A. $CH - C = CHNH$
37.	The ma	ajor component of the slag from the production		A. $CH - C = CH NH_2$
	of iron	is		$N\dot{H}_2$
	A.	an alloy of calcium and iron		B. $CH_3 - C = CHNa$
	B.	coke		B. $CH_3 - C \stackrel{?}{=} \stackrel{?}{C} H Na$ C. $CH_3 - C \stackrel{?}{=} C - Na$ D. $CH3 - C \stackrel{?}{=} C - NH_2$
	C.	impure ion		D. $CH3 - C \equiv C - NH_2$
	E	calcium trioxosilicate (V)	4.5	m 111
20	C 1.		45.	The label on a reagent bottle containing a clear organic
38.		m hydroxide should be stored in properly closed		liquid dropped off. The liquid was neutral to litmus and
		ners because it		gave a colourless gas with metallic sodium. The liquid must be an
	A. B.	readily absorbs water vapour from the air		
	В. С.	is easily oxidized by atmospheric oxygen turns golden yellow when exposed to light.		A. alkanoate B. alkene C. alkanol D. alkane
	C. D.	Melts at a low temperature.		C. aikanoi D. aikane
	٠.			

The above reaction is an example of

- displacement reaction
- a neutralization reaction B.
- C. an elimination reaction
- D. Saponification
- 47. Alkanoic acids have low volatility compared with Alkanoic because they
 - A. are more polar than alkanols
 - В have two oxygen atoms while alkanols have
 - C. form two hydrogen bonds while alkanols donot
 - D. form two hydrogen bonds while alkanols form one.
- 48. The octane number of a fuel whose performance is the same as that of a mixture of 55 g of 2, 2, 4-trimethyl pentane and 45 g of n-heptanes is
 - A. 45
- 55 C. 80 D. 100
- 49. Which of the following is formed when maltose reacts with concentrated tetraoxosulphate (VI) acid.
 - Carbon (IV) oxixde A.
 - B. Coal tar
 - C. Charcoal
 - Toxic fumes D.

50. Which of the following compounds represents the polymerization product of ethyne?


A..

B.

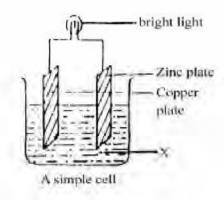
C.

D.

Chemistry 1991

- 1. Which of the following can be obtained by fraction of distillation?
 - A. Nitrogen from liquid air
 - B. Sodium chloride for sea water
 - C. Iodine from a solution of iodine in carbon
 - D. Sulphur from a solution of sulphur in carbon disulphide.
- Which of the following are mixture? I Petroleum ii Rubber 2. latex. Iii Vulcanizes' solution. Iv Carbon (ll) sulphides
 - A. I, ii and iii
 - B. I, ii and iv
 - C. I and ii only
 - D. I and iv
- Aniron reisknown to contain 70.0% FeO₃. The mass 3. of iron metal which can theorically be obtained from 80kg of the ore is.
 - 35.0 kg A.
- B. 39.2 kg
- C. 70.0 kg
- D. $78.4 \,\mathrm{kg}$
- [Fe = 356, O = 16]

- 4. In two separate experiments 0.36 g and 0.71 g of chlorine combine with a metal X to give Y and Z respectively. An analysis showed that Y and Z contain 0.20 g and 0.40 g of X respectively. The data above represents the law of.
 - A. multiple proportion
 - B. conversation of mass
 - C. constant composition
 - D. reciprocal proportion.
- 5. 30cm³ of oxygen at 10 atmosphere pressure is placed in a 20 dm³ container. Calculate the new pressure it temperature is kept constant.
 - A. 6.7 atm
- B. 15.0 atm
- C. 6.0 atm
- D. 66.0 atm
- 6. A given quantity of gas occupies a volume of 228 cm³ at a pressure of 750 mm Hg. What will be its volume at atmospheric pressure?
 - 200cm3 A.
- B. 225 cm³
- C. 230 cm³
- D. 235 cm³


	A. C. [GM.	28dm^3 112dm^3 V at s.t.p = 22.4 dr	B. D. m ³ , K = 39,	$56 \mathrm{dm^3}$ $196 \mathrm{dm^3}$ O = 16, C = 12, F	H=1]	an confer of Y —	-	, pr	26.2	elec ,
8.	confin moles A. C.	nple of a gas exe ed in a 2.93dm³c of gas in the sam 1.00 3.00 .082 litre atm/deg	ontainer at aple is B. D.			un kens.	(0)) ((9)	mak d /
9.	combi	s of element X (wine with atoms of Which of the follows has formula X is likely to be contains X ²⁺ i contains Y ⁻ io	Y(with 7 owing is FAY ionic ons	electrons in the	outer oound	shells atoms A. B. C. D.	as shown above of Y and Z is ionic covalent dative metallic.	e. The bond	formed between	een the
10.	total o	ons X ⁻ and Y ⁺ are of 10 electrons. It of the neutral at 10 and 10 11 and 9	How many	y proteins are in	n the ely?		h of the following even in trace and Ca ²⁺ Hg ²⁺ Mg ²⁺ Fe ²⁺		pollutant in dr	inking
11.		ectronic configur 3. How many unput. 5 3				g in 10 30oC. coppe	olubility of copp 00 g of water at 1 What mass of the or (11) tetraoxosu were cooled to 2 57.5 g	00°C and 25 ne salt would alphate (VI)	g in 100 g of v I crystallize, if	vater at 50 g of
12.		n of the following tt in ammonium of Ionic only Covalent only Ionic and dati Dative covale	chloride mo	olecule?	nding 18.		saturating lir	alcium chlor ne water wi	14.3 g er can be prepartide in distilled the carbon(IV) of vater with car	l water oxide
13.	electro A. C so B. So ch C. C so D. S	of the following is onegativity? hlorine, alumini odium, magnesi nlorine hlorine, phospho odium, odium, chlorin uminium.	um, magi ium, alum orus, alun	nesium, phosph ninium phosph ninium, magnes	orus, 19.	D. A pro	hydroxide	odium hydro distilled wa idal dispers effect y ssure	ogen trioxocar ter.	bonate
14.	of alka	ntity of air was pa aline pyrogallol. A allol would result nitrogen argon	An increas	se in the weight o		cm3 c Which	Carbon (IV) Ammonia ar	oride, 1.0 cang is suitabent? ooxide and looxide and ard hydroger	m3 of water at le for demons nydrogen chlor nmonia	15oC. trating

15.

Calculate the volume of carbon (lv) oxide measure at s.t.p,

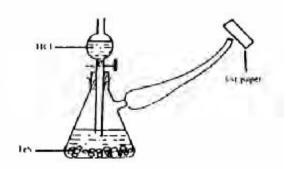
produced when 1 kg of potassium hydrogen trioxocarbonate (iV) is totally decomposed by heat.

7.

Which of the following substances could be satisfactorily used as X in the above figure?

- A. Ammonia and Potassium hydroxide
- B. Potassium hydroxide and sodium chloride
- C. Ammonia and ethanoic acid
- D. Ethanoic and sodium chloride
- 22. What volume of CO₂ at s.t.p would be obtained by reacting 10cm³ of 0.1 M solution of anhydrous sodium trioxocarbonate (IV) with excess acid?
 - A. 2.240 cm₃
- 3. 22.40 cm
- C. 224.0 cm₃
- D. 2240 cm₃
- $[G.M.V at s.t.p = 22.4 dm_3]$
- 23. If a current of 1.5 A is passed for 4.00 hours through a molten tin salt and 13.3 g of tins is deposited, What is the oxidation state of the metal in the salt?
 - A. 1 C. 3
- B. 2
- D. 4
- $[Sn = 118.7, F = 96500 \text{ C mol}^{-1}]$
- 24. Which of the following equivocal solutions, Na₂CO₃, Na₂SO₄, FeCl₃, NH₄Cl and CH₃ COONa, have pH greater than?
 - A. FeCl₃ and NH₄Cl
 - B. Na,CO, CH, COONa and Na,SO,
 - C. Na CO, and CH, COONa
 - D. FeCl₃, CH₃ COONa. NH₄Cl
- 25. MnO $_4^-$ +8H $^+$ +ne \longrightarrow M $^{++}$ +4H $_2$ O. Which is the value of n the reaction above?
 - A. 2
- B. 3
- C. 4
- D. 5
- 26. $2H_{2(g)} + SO_{2(g)} \longrightarrow 3S_{(s)} + 2H_2O_{(1)}$. The above reaction is A. a redox reaction in which H_2S is the oxidant and SO_2 is the reductant.
 - B. a redox reaction in which SO₂ is the oxidant and H₂S is the reductant.
 - C. Not a redox reaction because there is no oxidant in the reaction equation
 - D. Not a redox reaction because there is no reductant in the reaction equation.
- 27. Manganese(IV) oxide is known to hasten the decomposition of hydrogen peroxide. Its main actions is to.
 - A. increase the surface area of the reactants
 - B. increase the concentration of the reactants

- C. lower the activation energy for the reaction
- D. lower the heat of reaction, H, for the reaction,
- 28. 1.1 g of CaCl₂ dissolved in 50 cm³ of water caused a rise in temperature of 34°C. The heat reaction, H for CaCl₂ in kJ per moles is
 - A. -71.1
- B. –4.18
- C. +17.1
- D. +111.0


 $[Ca = 40, Cl = 35.5, specific heat of water is 4.18 KJ^{-1}]$

- 29. NO + CO $\stackrel{1}{\sim}$ 1/2 N₂ + CO₂ $\stackrel{\checkmark}{\sim}$ H = -89.3kJ
 - .What conditions would favour maximum conversion of nitrogen (ll) oxide and carbon(ll) oxide in the reaction above?
 - A. low temperature and high pressure
 - B. high temperature and low pressure
 - C. high temperature and high pressure
 - D. low temperature and low pressure.
- 30. Which of the following equilibria is unaffected by a pressure change?
 - A. $2\text{NaCl} \longleftrightarrow 2\text{Na} + \text{Cl}_2$
 - B. $H_2 + I_3 \leftrightarrow 2HI$
 - C. 20° \Leftrightarrow 30°
 - D. $2NO_{2} \longleftrightarrow N_{2}O_{2}$
- 31.

 ·								
Initial concentration of no in moles	Initial Rate (moles / sec)							
0.001	3.0 x 10 ⁻⁵							
0.002	1.2 x 10 ⁻⁴							

The data in the table above shows the rate of reaction of nitrogen (ll) oxide with chlorine at 25°C. It can be concluded that doubling the intial concentration of NO increase the rate of reaction by factor of

- A. two C. four
- B. three D. five
- 32. Which of the following gases will rekindle a brightly glowing splint?
 - A. NO
- B. NO
- $C. N_2O$
- D. Cl,
- 33. Which of the following salts can be melted without decomposition?
 - A. Na,CO,
- B. CaCO₃
- C. $MgCO_3$
- D. ZnCO₃
- 34. Oxygen gas can be prepared by heating
 - A. ammonium trioxonirate (V)
 - B. ammonium trioxonirate (lll)
 - C. potassium trioxonirate (V)
 - D. manganese (IV) oxide.

The appropriate test paper to use in the above experiment is moist.

- A. litmus paper
- B. potassium heptaoxodichromate (1V) paper
- C. lead (11)trioxonirate (V) paper.
- D. Universal indicator paper.
- 36. Addition of aqueous ammonia to a solution of Zn⁺⁺ gives a white precipitate which dissolves in an excess of ammonia because.
 - A. zinc is amphoteric
 - B. zinc hydroxide is readily soluble
 - C. zinc forms a complex which is readily soluble in excess ammonia
 - D. ammonia solution is a strong base.
- 37. Which of the following, in clear solution, forms a white precipitate when carbon(1V) oxide is bubbled into it for a short time?
 - A. KOH B. NaOH C. Ca(OH), D. Al(OH)₃
- 38. Copper (11) tetraoxosulphate (V1) is widely used as a
 - A. Fertilizer B. Fungicide C. Disinfectant D. Purifier
- 39. Which of the following metals can be prepared in samples by the thermal decomposition to their trioxonirate (V) salt?
 - A. Copper and mercury
 - B. Silver and copper
 - C. Mercury and silver
 - D. Magnesium and mercury
- 40. Which of the following compounds can exist as geometric isomers?
 - A. 2-methylbut2-ene
 - B. But-2-ene
 - C. But-1-ene
 - D. H

 Cl—C—B
- 41. How many structural isomers can be written for the alkyl bromide C_2H_0Br ?
 - A. 3 C. 6
- B. 4 D. 8

- 42. The final products of the presence of ultraviolet light are hydrogen chloride and
 - A. chloromethane
 - B. tetrachloromethane
 - C. trichloromethane
 - D. dichloromethane
- 43. How many grams of bromine will be required to completely react with 10 g of propyne?
 - A. 20 g
- B. 40 g
- C. 60 g
- D. 80 g
- [C = 12, H = 1, Br = 80].
- 44. Ethene when passed into concentrated H₂SO₄ is rapidly absorbed. The product is diluted with water and then warmed to produce.
 - A. ethanol
- B. diethyl ether
- C. ethanal
- D. diethyl sulphate.
- 45. One of the advantages of detergents over soap is that detergents.
 - A. are easier to manufacture
 - B. foam more than soap
 - C. form soluble salts with hard water
 - D. are able to deter germ more than soap.
- 46. CH₃CH₂CHCH₂ alc.KOH CH₃CH = CHCH₃

The above reaction is an example of

- A. dehydration
- B. dehydrohalogenation
- C. neutralization
- D. a fission reaction
- 47. A certain liquid has a high boiling point. It is viscous, non-toxic, miscible with water to be hygroscopic. This liquid is most likely to be.
 - A. CH,CH,CH,CH,OH
 - B. CH, CH, OHCH,
 - C. CH,CH,CHOHCH,
 - E CH,OHCHOCH, OH
- 48. The compound.
 - CH₃-CH-CH3

Is known as

- A. 1-chloro-2-methylbutane
- B. 1-chloro-2-methylpronane
- C. 2-chloromethylethane
- D. 1-chloro-2,2-dimethylethane
- 49. Which of the following statements is TRUE of the complete hydrolysis of a glyceride by sodium hydroxide?
 - A. 3 moles of NaOH are required for each mole of glyceride
 - B. 3 moles of glycerol are produced
 - C. only one mole of soap is formed.
 - D. Concentrated H₂SO₄ is essential for the completion of the reaction.

50. Which of the following are the products of the reaction between CH₂COOH and Cl₂ in sunlight? CICH, COOH + HCl A. B. CH,COCl+HOCl C. CH, COOC1 + HC1 D. CH,COCl+H,O Chemistry 1992 Which of the following substances is not a 9. 1. The nucleus of the isotope tritium, contains homogeneous mixture? two neutrons with no protons Filtered sea water B. one neutron and one proton A. B. Soft drink C. two neutron and one electron C. D. Flood water two neutron, one proton, and one electron. D. Writing ink 10. How many lone pairs of electron are there on the central atom of the H₂O molecules? 2. There is a large temperature interval between the melting point and the boiling point of a metal because. 2 metals have very high melting points B. A. B. 3 metals conduct heat very rapidly C. C. melting does not break the metallic bond but D. boiling does. $^{14}\,\mathrm{N}\,+\mathrm{X}$ \longrightarrow $^{17}_{~8}\,\mathrm{O}+^{1}_{~1}\,\mathrm{H}$. In the above reaction , 11. D. the crystal lattice of metals is easily broken. X is a A. neutron, B. Helium atom 3. How many moles of [H⁺] are there in 1 dm³ of 0.5 solution $\begin{array}{c} \text{How} \\ \text{of H}_2\text{SO}_4 \\ 2.0 \text{ moles} \end{array}$ C. Lithium atom D. Deutrium atom 1.0 mole B. C. 0.5 mole D. 0.25 mole Four elements P,Q,R and S have 1,2,3 and 7 electrons 12. in their outermost shells respectively. The element which is 4. $wH_2SO_4 + xA(OH)_3 \rightarrow yH_2O + zAl_2(SO4)_3$. The unlikely to be a metal is respective values of w, x, y and z in the equation above A. P B. Q C. R D. S are A. 2,2,5 and 1 B. 3,2,5 and 2 C. 3,2,6 and 1 D. 2,2,6 and 2 13. The pollutants that are likely to be present in an industrial environment are A given mass of gas occupies 2 dm³ at 300 K. At what H₂S, SO₂ and oxides of nitrogen 5. A. temperature will its volume be doubled keeping the B. NH., HCl and CO pressure constant? C. CO, NH, and H,S B. A. 400 K 480 K D. Dust, No and Cl, D. 600 K C. 550 K 14. Which of the following gases dissolves in water If 100 cm³ of oxygen pass through a porous plug is 50 vapour to produce acid rain during rainfall? 6. seconds, the time taken for the same volume of Oxygen A. hydrogen to pass through the same porous plug is B. Carbon (11) oxide $10.0 \, s$ B. $12.5 \, s$ C. Nitrogen A. C. 17.7 s D. 32.0 sD. Sulphur (IV) oxide [O = 16, H = 1]15. Water for town supply is chlorinate to make it free 7. Which of the following is a measure of the average from kinetic energy of the molecules of a substance. A. bad odour A. Volume B. Mass B. bacteria C. Pressure D. Temperature C. temporary hardness 8 An increase in temperature causes an increase in the D. permanent hardness. pressure of a gas in a fixed volume due to an increase in the 16. On which of the following is the solubility of a A. number of molecules of the gas gaseous substance dependant? 1. Nature of solvent. B. density of the gas molecules 11. Nature of solute 11. Temperature. 1V.Pressure. 1, 11, 111 and 1V C number of collisions between the gas B. l and ll only A. D. number of collision between the gas molecules C. ll only D. 1, 111 and iV only and the walls of the container.

17.	An emulsion paint consist of	26. In which of the following is the entropy change				
	A. gas or liquid particles dispersed in liquid	positi	ve?			
	B. liquid particles dispersed in liquid		A. $H_2O_{(1)} \longrightarrow H_2O(g)$			
	C. solid particles dispersed in liquid		B. $Cu^{2+}_{(2a)} + Fe_{(s)} \longrightarrow Fe^{2+}_{(2a)} + Cu_{(s)}$			
	D. solid particles dispersed in solid		C. $N_{2(a)} + 3H_{2(a)} + 3H_{2(a)}$			
			$\begin{array}{lll} A. & H_2O_{(1)} \!$			
18.	A sample of orange juice is found to have a pH of		$21101_{(s)} \qquad 1 \cdot 2(g) \qquad 22(g)$			
10.		27.	In what way is aquilibrium constant for the forward			
	3.80. What is the concentration of the hydroxide ion	21.	In what way is equilibrium constant for the forward			
	in the juice?		reaction related to that that of the reverse reaction?			
	A. 1.6×10^4 B. 6.3×10^{11}		A. The addition of the two is expected to be			
	C. 6.3×10^4 D. 1.6×10^{-11}		one			
			B. The product of the two is expected to be			
19.	Arrange HCl, CH ₃ COOH, C ₆ H ₅ CH ₃ in order of		one			
	increasing conductivity.		C. The two equilibrium constants are identical			
	A. HCl,CH, COOH,C ₆ H,CH ₃		D. The product of the two is always greater			
	B. C ₆ H ₂ CH ₃ HCl, CH ₃ , COOH		than one.			
	C. C H, CH, COOH, HCI,					
	D. CH ₃ , COOH, C ₆ H ₃ CH ₃ ,HCl	28.	Which of the following equilibra shows little or no			
	$D. \qquad Cli_3, Cooli, C_6 li_5 Cli_3, lici$	20.	net reaction when the volume of the volume of the			
20.	Which of these is an acid salt?					
20.			system is decreased?			
	A. $K_2SO_4A_{12}(SO_4)_3.24H_2O$		A. $H_{2(g)} + I \rightleftharpoons 2HI_{(g)}$			
	B. $CuCO_3$. $Cu(OH)_2$		B. $2NO_{2(g)} N_2O_{4(g)}$			
	C. NaHS		C. $PCI \xrightarrow{S(g)} PCI_{3(g)} + CI_{2(g)}$			
	D. CaOCl ₂		A. $H_{2(g)} + I \rightleftharpoons 2HI_{(g)}$ B. $2NO_{2g} \rightleftharpoons N_2O_{4(g)}$ C. $PCI_{3(g)} + CI_{2(g)}$ D. $ZnO_{(s)} + CO_{2(g)} \rightleftharpoons ZnCO_{3(s)}$			
	_		(-) -(-)			
21.	How many grams of H ₂ SO ₄ are necessary for the	29.	For a general equation of the nature $xP + yQ \iff mR$			
	preparation of 0.175dm^3 of $6.00 \text{MH}_2 \text{SO}_4$?		+ nS, the expression for the equilibrium constant is			
	A. 206.0 g		A. $k[P]^x[Q]^y$			
	B. 103.0 g		B. [P] ^x [Q] ^y			
	C. 98.1 g		b. [1] [Q]			
	<u> </u>		[D]m[C]n			
	E		$[R]^m[S]^n$			
	[S = 32.06, O = 16.00, H = 1.00].		C [D]m [G]n			
22			C. $[R]^m[S]^n$			
22.	Copper (ll) tetraoxosulphate (lV) solution is					
	electrolyzed using carbon electrodes. Which of the		$[P]^x[Q]^y$			
	following are produced at the anode and cathode					
	respectively.		D. $m[R] n[S]$			
A.	Copper and oxygen					
B.	Oxygen and copper		X [P] y [Q].			
C.	Hydrogen and copper					
D.	Copper and hydrogen	30.	Which of these statements is TRUE about			
			carbon(1V)oxide?			
23.	Calculate the mass, in kilograms, of magnesium		A. It supports combustion			
20.	produced by the electrolysis of magnesium(ll)		B. It is strong acidic in water			
	chloride in a cell operating for 24 hours at 500 amperes.		C. It is very soluble in water			
	A. 2.7 B. 5.4		· ·			
	C. 10.8 D. 21.7		produce magnesium oxide.			
	$[Faraday = 96,500 \text{ C mmol}^{-1}, Mg = 24]$					
		31.				
24.	$MnO_2 + 2Cl^2 + 4H \longrightarrow Mn^{2+} + Cl_2 + 2H_2O$. The change					
	is oxidation numbers when the manganese, chlorine		Z,			
	and hydrogen ions react according to the above		A de P			
	equation are respectively.		Miurogen (1)			
	A. 2,2,4 B1,-2 4		Orida			
	C. $-2,1,0$ D. $2,4,0$		Water Water			
	, , =, ·, ·		Ilea			
25.	$S_2O3^{2-} + l_2 \longrightarrow S_4O6^{2-} + 21$. In the reaction above,					
	the oxidizing agents is					
	A. S_2O3^2					
			In the experiment above, Z can be			
	2					
	C. S_4O6^2		A. a solution of sodium dioxonitrate(lll) and			
	D. 1 ⁻		ammonium chloride			

B. a solution of lead trioxonitrate(V)

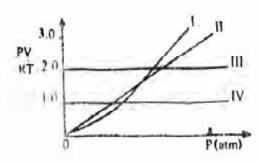
	C. a solution of sodium trioxonitrate(V) and		42.	CH ₃							
	_	ammonium chloride									
	D.			phate (VI) acid and		CH ₃ -C	$=$ CH $^-$ CH $_2$ CH $^-$	CH ₃			
	sodium trioxonitrate(V).				I						
						G	H_2				
32.		_		ion of gases is used		ٳ					
	for metal welding? 1. Oxygen and ethyne. ll Hydrogen			CH,							
		yne. 111. Hydroge	n and oxy	ygen. IV Ethyne,	The IUPAC name for the hydrocarbon above is A. 2-ethyl-5-methylhex-2-ene					2 18	
		en and oxygen.	ъ	111 1177		A.					
	A.	1 and 11	B.	111 and 1V		B.	,	•			
	C.	1 and 111	D.	11 and 1V		C. D.					
33.	Which of the following oxides of nitrogen is unstable in air?			43.	D. 3,6-dimethylhexpt –3-ene Which of the following compounds is a secondary						
33.				43.	alkanol?						
	A.	NO,	B.	NO		A.		СН			
	C.		D.	N_2O_5		A.	CH ₃ -CH ₂ -CH-	C11 ₃			
	C.	N_2O_4	D.	$1_{2}0_{5}$			ОН				
34.	The gas formed when ammonium trioxonitrate (V) is				C.	CH, CH, CH, C	н он				
51.	heated with sodium hydroxide is A. hydrogen				D.	CH ₃ CH ₂ OCH ₃					
					2.		ÇH,				
	B.	nitrogen(1V) ox	ide					3			
	C.	oxygen				СН₃- С <mark>-</mark> ОН					
	D.	ammonia					3				
35.	Safety	matches contain s	ulnhur a	nd							
33.	Safety matches contain sulphur and A. Potassium trioxochlorate(V)						CH_3				
	В.	Potassium trioxo			44. Which of the following compounds reacts with sodium					sodium	
	C. Charcoal		• /	metals	metals as well as silver and copper salt.						
	D.	Phosphorus sul	pide			A.	$CH_3 Ca = C=0$				
36.	نائلة ٨	_	_	of hamium ablanida		В	CH ₃ CH ₂ CH ₂ C	H_2CH_3			
30.	Addition of an aqueous solution of barium chloride to the aqueous solution of a salt gives a white				C. D.	$CH_3 Ca = CH_3$ $CH_3 CH = CHC$	ч				
	precipa	-	n a san g	gives a winte			3	3			
	A.	nitrate	B.	carbonate	45.	Which					
	C.	chloride	D.	sulphide		A.	Ethanol and dir				
27	1			B.	Benzene and m		zene				
37.	Sodium hydroxide solution can be conveniently				C. Ethanol and propanone						
	stored in a container made of A. lead B.		B.	zinc		D. Trichloromethane and tetrachloromehane					
	A. C.	aluminum D.		copper	46.	The function group present in an treatment with a					
						saturated solution of NaHCO ₃ is .					
38.	Which of the following is NOT used as raw material in the solvary process?				A.	B. carbonalkoxyl group					
	A.	Ammonia				C.	carbonyl group				
	B. Sodium chlorideC. Calcium trioxocarbonateD. Sodium trioxocarbonate(V1)				D.	carboxy group.					
			47.	The ch	aracteristic reactio	on of carbo	onyl compour	ds is.			
						A.	Substitution	B.	Elimination		
39.		min consists of alu	ıminum,	copper,		C.	Addition	D.	Saponifica	itioon	
	A. zinc and gold			48.	An org	anic compound c	ontaining	40.1% carbo	on and		
	B. lead and manganeseC. nickel and silverD. manganese and magnesium.			An organic compound containing 40.1% carbon and 6.667% hydrogen has an empirical formula of .							
				A.	$C_2H_4O_2$	B.	$C_{2}H_{3}O_{2}$				
D.	1112	inganese and mag	nesium.			C.	CH ₂ O	D.	CH ₃ O		
40.	$CaO_{(s)} + H_2O_{(1)} \longrightarrow Ca(OH)_{2(s)}$ H = -65kJ. The process represented by the above equation is known as. A. dissolution B. slackin		49.	Alkana	als can be differen	tiated fro	m alkanones	by			
				reaction with.							
1			A.								
	_	mortaring	B.								
41.		The carbon atoms in ethane are		C.		sodium hydrog	-	te			
71.	A.				D.		tollen's reagent				
	B.	sp hybridized			50.	An exa	imple of a polysac	charide i	S		
	C.	sp ² hybridized			20.	- 111 0/10	A.	dextro		nannose	
	D.	not hybridized.					C.glud			arch.	
		-					-				

Chemistry 1993

- 1. The dissolution of common salt in water is physical change because
- A. the salt can be obtained by crystallization
 - B. the salt can be recovered by the evaporation of water.
 - C. Heat is not generated during mixing
 - D. The solution will not boil at 100°C
- 2. Which of the following substances is mixture?

A.	Sulphur powder	В.	Bronze
C.	Distilled water	D.	Ethanol

- 3. How many moles of oxygen molecules would be produced dfrom the decomposition of 2.5 moles of potassium trioxochlorate (V)?
 - A. 2.50 B. 3.50 C. 3.75 D. 7.50
- 4. A balanced chemical equation obeys the law of
 - A. Conservation of mass
 - B. Definite proportions
 - C. Multiple proportions
 - D. Conservation of energy
- 5. At 25°C and 1 atm, a gas occupies a volume of 1.50 dm³. What volume will it occupy at 100°C at 1 atm?


		1.	
A.	$1.88{\rm dm^3}$	B.	$6.00{\rm dm^3}$
C.	$18.80\mathrm{dm^3}$	D.	$60.00\mathrm{dm^3}$

6. A gaseous mixture of 80.0 g of oxygen and 56.0 g of nitrogen has a total pressure of 1.8 atm. The partial pressure of oxygen in the mixture is

A.	0.8 atm	B.	1.0 atm
C.	1.2 atm	D.	1.4 atm
	4 < 3 7 4 4 7		

[O = 16, N = 14]

7.

Which of the curves above represents the behavior of 1 mole of an ideal gas?

A. 1 B. 11 C. 111 D. IV

- 8. For iodine crystals to sublime on heating, the molecules must acquire energy that is
 - A. less than the forces of attraction in the solid
 - B. equal to the forces of attraction in the solid

C. necessary to melt the solid

- D. greater than the forces of attraction in both solid and the liquid phases
- 9. An element, E, has the electronic configuration $1s^22s^22p^63s^23p^3$. The reaction of E with a halogen X can give.

A. EX_3 and EX_5 B. EX_3 only C. EX_5 only D. EX_5 and EX_5

10. Two atoms represented as ²³⁵₉₂Uand ²³⁸₉₂U are A. isomers B. allotropes C. isotopes D. anomers

11. As the difference in electronegativity between bonded atoms increase, polarity of the bond

A. decreases B. increases

C. remains unchanged

D. reduces to zero.

12. Which group of elements forms hydrides that are pyramidal in structure?

A. 111 B. IV C. V D. VI

13. Water has a rather high boiling point despite its low molecular mass because of the presence of

A. hydrogen bonding

B. covalent bonding

C. ionic bonding

D. metallic bonding

14. Argon is used in gas-filled electric lamps because it helps to

A. prevent the reduction of the lamp filament

B. prevent oxidation of lamp filament

C. make lamp filaments glow brightly

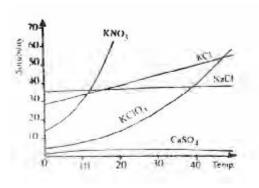
D. keep the atmosphere in the lamp inert.

15. The air around a petroleum refinery is most likely to contain

A. CO₂ SO₃ and N₂O

B. CO, CO and N₂O

C. SO_3^2 CO and NO_2


D. PH, H,O and CO,

- 16. Water can be identified by the use of
 - A. an hydrogen copper(11) tetraoxosulphate(1V)
 - B. an hydrogen sodium trioxocarbonate(1V)
 - C. potassium heptaoxochromate(vii)
 - D. copper (11) trioxocarbonate(iv)
- 17. The phenomenon whereby sodium trioxocarbonate (1) decahydrate loses some of its water crystallization on exposure to the atmosphere is known as

A. deliquescence B. hygroscopy
C. effervescence D. efflorescence

- A student prepares 0.5 M solution each of hydrochloric 18. and ethanoic acids and then measured their pH. The result would show that the
 - A. pH values are equal
 - B. HCl solution has higher pH
 - C. Sum of the pH values is 14
 - D. Ethanoic acid solution has a higher pH.

19.

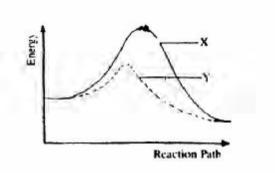
For which salt in the graph above does the solubility increase most rapidly with rise in temperature

- A. CaSO,
- B.
- C. **NaCl**
- KNO, D. **KCl**
- 20. $NH_3 + H_3O \longrightarrow NH_4 + H_2O$. it may be deduced from the reaction above that
 - A. a redox reaction has occurred
 - B. H₂O⁺ acts as an oxidizing agent
 - C. H₃O+ acts as an acid
 - D. Water acts as an acid
- 21. 4.0 g of sodium hydroxide in 250 cm³ of solution contains
 - 0.40 moles per dm3 A.
 - B. 0.10 moles per dm³
 - C. 0.04 moles per dm3
 - D. 0.02 moles per dm³
- During the electrolysis of a salt of metal M, a current 22. of 0.05 A flow for 32 minutes 10 second and deposit 0.325 g of M. What is the charges of the metal ion?
 - A.
 - B. 2
 - C. 3
 - D.

[M = 65, l = 96,500 C per mole of electron]

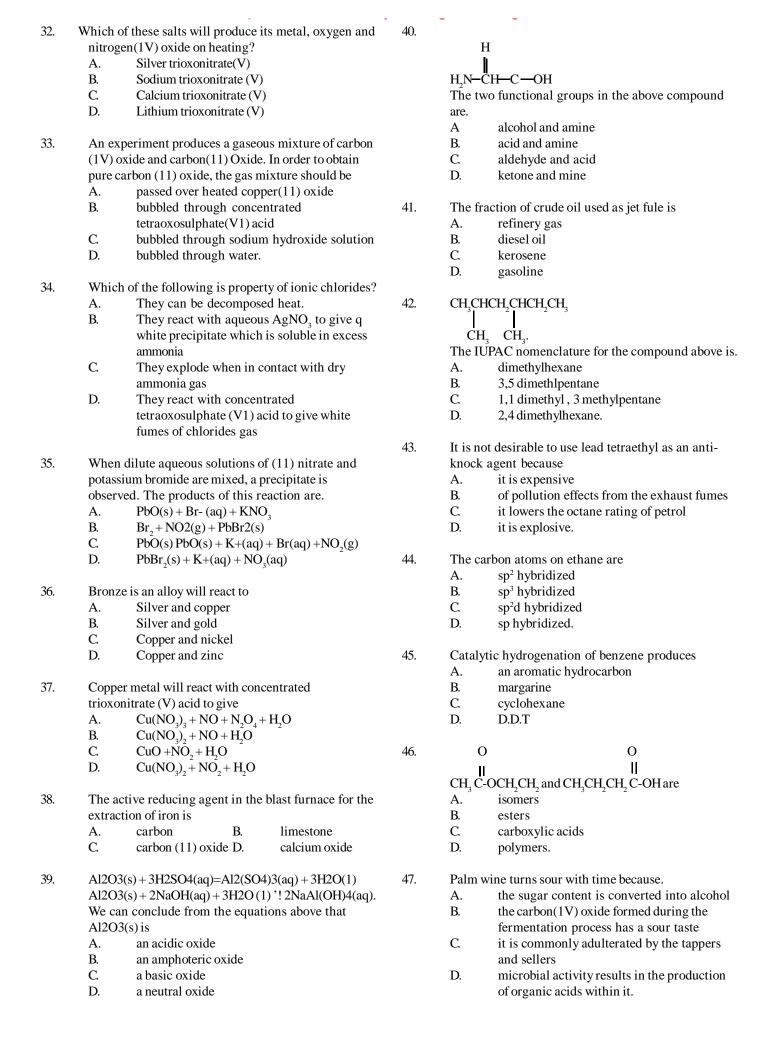
- 23. Which of the following reactions occurs at the anode during the electrolysis of a very dilute aqueous solution of sodium chloride?
 - $OH-CH \longrightarrow OH$ A.
 - $Cl e \longrightarrow Cl$ B.
 - C. $OH + CI \longrightarrow HCI$
 - $Na^+ + e^- \xrightarrow{Hg} Na/Hg amalgam$ D.

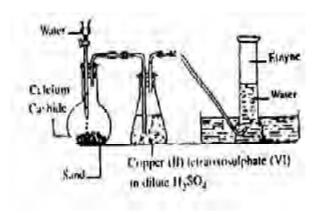
From the data above, it can be deduced that the most powerful reducing agent of the four metals is


Fe

Zn

- A. Cu B. C. Ba D.
- 25. The oxidation states of chlorine in HOCl, HClO, and HClO, are respectively
 - -1, +5 and +7
 - B. -1,-5 and 7
 - C. +1, +3 and +4
 - D. +1, +5 and +7
- 26. A reaction takes place spontaneously if
 - A. $\ddot{A}G = O$
 - B. $\ddot{A}S < O$ and $\ddot{A}H > O$
 - ÄH<TÄS C.
 - D. ÄG>O
- 28. The standard enthalpies of formation of CO₂(g), $H_2O(g)$ and CO(g) in kJ mol-1 are -394, -242 and -110 respectively. What is the standard enthalpy change for the reaction $CO(g) + H_2O \longrightarrow CO_2(g) + H_2(g)$?
 - -42 kJ mol-1 A.
 - B. +42 kJ mol-1
 - C. $-262 \, kJ \, mol-1$
 - D. +262 kJ mol-1
- 29. 10 g of a solid is in equilibrium with its own vapour. When 1 g of a small amount of solid is added, the vapour pressure
 - remain the same A.
 - B. drops


30.


- C. increase by 1%
- D. increase by 99%

In the diagram above, curve X represents the energy profile for a homogeneous gaseous reaction. Which of the following conditions would produce curve Y for the same reaction?

- increase in temperature A.
- B. increase in the concentration of a rectant
- C. addition of a catalyst
- D. increase in pressure.
- 31. $NaCl(s) + H_2SO_4(1) \longrightarrow HCl(g) + NaHSO_4(s)$. In the reaction above. H2SO4 behaves as
 - A. a stron acid
 - B. an oxiding agent
 - C. a good solvent
 - D. a dehydrating agent.

The function of the copper (11) tetraoxosulphate (V1) in dilute H₂SO₄ in the figure above is to

- Dry the gas A.
- B. Absorb phosphine impurity]
- C. Absorb ethene impurity
- D. Form an acetylide with ethyne.

- Which of the represents Saponification? 49.
 - reaction of carboxylic acids with sodium hydroxide
 - B. reaction of Alkanoates with acids
 - C. reaction of carboxylic acids with sodium alcohols
 - D. reaction of Alkanoates with sodium hydroxide.
- 50. The confirmatory test for Alkanoic acids in organic qualitative analysis is the
 - turning of wet blue litmus paper red A.
 - B. reaction with alkanols to form esters
 - C. reaction with sodium hydroxide to foem salt and water
 - reaction with aqueous Na2CO3 to liberate a D. gas which turns lime water milky.

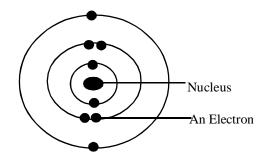
Chemistry 1994

1.	A mixture of sand, ammonium chloride and sodium
	chloride is best separated by
	A sublimation followed by addition of water

- dimation followed by addition of water and filtration
- B. sublimation followed by addtion of water and evaporation
- C. addition of water followed by filtration and sublimation
- D. addition odf water followed by crystallization and sublimation.
- A pure solid usually melts 2.
 - over a wide range of temperature A.
 - B. over a narrow range of temperature
 - C. at a lower temperature than the impure one
 - D. at the same temperature as the impure one.
- 3 At the same temperature and pressure, 50 cm³ of nitrogen gas contains the same number of molecules as
 - A. 25 cm³ of methane
 - B. 40 cm³ of hydrogen
 - C. 50 cm 3 of ammonia
 - D. 100 cm³ of chlorine
- 8 g CH₄ occupies 11.2dm³ at s.t.p. What volume would 4. 22 g of CH₂CH₂CH occupy under the sme condition?
 - $3.7 \, dm^3$ A.
- $11.2\,dm^{3}$ B.
- C. 22.4 dm³
- D. $33.6\,dm^{3}$
 - [C=12, H=1]
- 5. To what temperature must a gas 273 K be heated in order to double both its volume and pressure?
 - 298 K A.
- B. 546 K
- C. 819K
- D. 1092 K

- 6. For a gas, the relative molecular mass is equal to 2Y. What is Y?
 - A. The mass of the gas
 - The vapour density of the gas B.
 - C. The volume of the gas
 - The temperature of the gas D.
- 7. The densities of two gases, X and Y are 0.5 g dm⁻³ and 2.0 g dm⁻³ respectively. What is the rate of diffusion of X relative to Y?
 - 0.1 A.
- B. 0.5

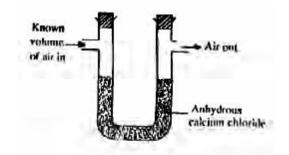
4.0


- C. 2.0
- D.
- An increase in temperature curves causes an increase 8. in the pressure of a gas because
 - it decreases the number of Collision between A. the molecules
 - B. the molecules of the gas bombard the walls of the container more frequently
 - C. it increase the number of Collision between the molecules
 - D. it causes the molecules to combine
- 9. The shape of ammonia molecules is
 - A. trigonal planar
 - B. octahedral
 - C. square planar
 - D. tetrahedral.
- 10. The number of electrons in the valence shell of an element of atomic number 14 is
 - A. 1
- B. 2
- C. 3
- D.
- 4

- 11. Which of the following physical properties decreases down a group ion the periodic table?
 - A. Atomic radius
 - B. Ionic radius

12

15.


- C. Electropositivity
- D. Electronegativity.

The diagram above represents atom of

- A. Mangnesium
- B. Helium
- C. Chlorine
- D. Neon
- 13. Elements X, Y and Z belongs to groups 1,V and V11 respectively. Which of the following is TRUE about the bond types of XZ and YZ
 - A. Both are electrovalent
 - B. Both are covalent
 - C. XY is electrovalent and YZ₃ is covalent
 - D. XZ is covalent and YZ₃ is electrovalent.
- 14. Which of the following atoms represents deuterium?

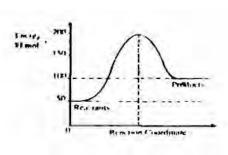
]	No of	No of	No of
p	rotons	neutrons	electrons
A.	1	0	0
B.	1	0	1
C.	1	1	1
D.	1	2	1

The set-up above would be useful for determining the amount of

- A. Oxygen in air
- B. Water vapour in air
- C. CO, in air
- D. Argon in air.
- 16. A solid that absorbs water from the atmosphere and forms an aqueous solution is
 - A. hydrophilic
 - B. efflorescent
 - C. deliquescent
 - D. hygroscopic

- 17. A major effect of oil pollution in coastal water is the
 - A. destruction of marine life
 - B. desalination of water
 - C. increase in the acidity of the water
 - D. detoxification of the water.
- 18. Sodium chloride has no solubility product value because of its.
 - A. saline nature
 - B. high solubility
 - C. low solubility
 - D. insolubility
- 19. The solubility in moles per dm³ of 20.2g of potassium trioxonitrate (V) dissolved in 100g of water at room temperature is
 - A. 0.10
 - B. 0.20
 - C. 1.00
 - D. 2.00
 - [K = 39, O = 16, N = 14]
- 20. A few drops of concentrated PCl are added to about 10cm³ of a solution of pH 3.4. The pH of the resulting mixture is
 - A. less than 3.4
 - B. greater than 3.4
 - C. unaltered
 - D. the same as that of pure water
- 21. Which of the following compounds is a base?
 - A. CO,
 - B. CaO
 - C. H.PO.
 - D. CH,COOH
- 20cm³ of a 2.0 M solution of ethanoic acid was added to excess of 0.05 M sodium hydroxide. The mass of the salt produced is
 - A. 2.50 g
 - B. 2.73 g
 - C. 3.28 g
 - D. 4.54 g

$$[Na = 23, C = 12, O = 16, H = 1]$$

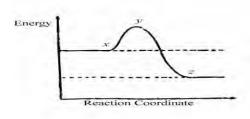

- 23. What volume of oxygen measured at s.t.p would be liberated on electrolysis by 9650 coulombs of electricity?
 - A. 22.4 dm3
 - B. $11.2 \, dm^3$
 - C. $1.12 \, \text{dm}^3$
 - D. $0.560 \,\mathrm{dm^3}$

[Molar Volume of gas = $22.4 \, \text{dm}$ 3, F = $96,500 \, \text{C}$ mol-1]

- 24. Crude copper could be purified by the electrolysis of concentrated copper911) chloride if the crude copper is
 - A. made both the anode and the cathode
 - B. made the cathode
 - C. made the anode
 - D. dissolved in the solution.

- $H(s) + H(0) \longrightarrow H(g) + OH(aq)$. From the equation 25. above, it can be inferred that the
 - A. reaction is a double decomposition
 - B. hydride ion is reducing agent
 - C. hydride ion is an oxidizing agent
 - D. reaction is neutralization.

26

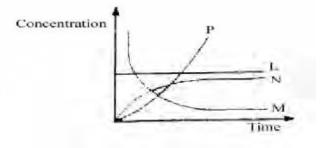

The ΔH for the reaction represented by the energy profile above is

- -100 kJ mol⁻¹ A.
- B. $+100\,kJ\,mmol^{-1}$
- C. +50kJ mol-1
- D. -50 kJ mol-1
- 27. An anhydride is an oxide of a non-metal.
 - Which will not dissolve in water A.
 - whose solution water has pH greater than7 B.
 - C. whose solution in water has a pH less than 7

B.

- D. whose solution in ware has a pH of 7
- $MnO_4(aq) + 8H^+(aq) + Fe^{2+}(aq) \longrightarrow Mn^{2+}(aq) + 5Fe^{3+} +$ 28. 4H₂O(1). The oxidation number of manganese in the above reaction change from
 - +7 to +2A.
- +6 to +2
- C. +5 to +2
- D. +4 to +2

29.

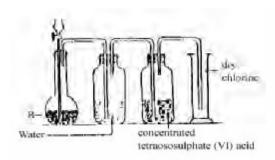


In the diagram above, the activation energy is represented by

- A. у-х
- C. X-Z

- B. \mathbf{X}
- D. У
- Which of the following is TRUE of Le Chatelier's 30. principle for an exothermic reaction?
 - A. Increase in temperature will cause an increase in equilibrium constant
 - Increase in temperature will cause a decrease B. in the equilibrium constant
 - C. Addition of catalyst will cause an increase in the equilibrium constant.
 - C. Addition of catalyst will cause a decrease in the equilibrium constant.

- Which of the following are produced when ammonium 31. trioxonirate(V) crystals are cautiously heated in a hard glass round bottomed flask?
 - A. N₂O and steam
 - B. NO₂ and ammonia
 - C. N₂O₄ and NO₂
 - D. NO and NO
- 32. $2HCl(aq) + CaCO_3(s) \longrightarrow CaCl_2(aq) + H2O(10 + CO_2g).$ From the reaction above, which of the following curves represents the consumption of calcium trioxocarbonate(IV) as dilute HCl is added to it?



A. L C. N B. M D. P

33.

34.

35.

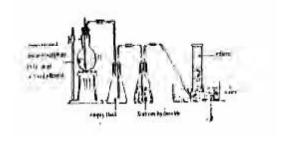
In the diagram above, R is a mixture of

- potassium tetraoxochlorate(Vii) and A. concentrated H₂SO₄
- B. potassium tetraoxomanganate (vii) and concentrated HCl
- C. manganese(1V) oxide and concentrated HCl
- D. manganese (1V) oxide and concentrated HCl
- Which of these metals CANNOT replace hydrogen from alkaline solutions?
 - A. Aluminium
 - B. Zinc
 - C. Tin
 - D. Iron
- Clothes should be properly rinsed with water after bleaching because
 - the bleach decolourizes the clothes A.
 - B. chlorine reacts with fabrics during bleaching
 - C. the clothes are sterilized during bleaching
 - D. hydrogen chloride solution is produced during bleaching.

- 36. Which of these solutions will give a white precipate with a solution of barium chloride acidified with hydrochloride acid?
 - A. Sodium trioxocarbonate(1V)
 - B. Sodium tetraoxosulphate
 - C. Sodium trioxosulphate (1V)
 - D. Sodium sulphides
- 37. SO₃ is NOT directly dissolved in water in the preparation of H₂SO₄ by the contact process because.
 - A. the reaction between SO3 and water is violently exotheremic
 - B. acid is usually added to water and never water to acid
 - C. SO₃ is an acid not dissolve in water readily
 - D. SO₃ is an acid gas.
- 38. In an electrolytic set-up to protect iron from corrosion, the iron is
 - A. made the cathode
 - B. made the anode
 - C. used with a metal of lower electropositive potential
 - D. initially coated with tin
- 39. Which of the following is NOT true of metals?
 - A. They are good conductors of electricity
 - B. They ionize by electron loss
 - C. Their oxides are acidic
 - D. They have high melting points.
- 40. Which of the following is the correct order of decreasing activity of the metal Fe, Ca, Al and Na?
 - A. Fe > Ca > Al > Na
 - B. Na > Ca > Al > Fe
 - C. Al > Fe > Na > Ca
 - D. Ca > Na > Fe > Al.
- 41. H CH₃ H H

 | | | H CP C C P C P C |
 | H CH3

Н


The IUPAC name of the compound above is

- A. 2,2-dimethyl but-1-yne
- B. 2,2-dimethyl but-1-ene
- C. 3,3-dimethyl but-1-ene
- D. 3,3-dimethyl but-1-yne
- 43. When sodium is added to ethanol, the products are
 - A. sodium hydroxide and water
 - B. sodium hydroxide and hydrogen
 - C. sodium ethnocide and water
 - D. sodium ethnocide and hydrogen.
- 44. The general formula of alkanones is
 - A. RCHO
 - B. R,CO
 - C. RCOOH
 - D. RCOOR

- 45. When sodium ethanoate is treated with a few drops of concentrated tetraoxosulphate(V1) acid one of the products is
 - A. CH,COOH
 - B. CH, COOH,
 - C. CH,COOC,H,
 - D. C2H₄COOCH
- 46. One mole of a hydrocarbon contains 48 g of carbon. If its vapour density is 28, the hydrocarbon is
 - A. an alkane
 - B. an alkene
 - C. an alkyne
 - D. aromatic

[C=12, H=1]

Use the diagram below to answer questions 47 and 48.

The reaction taking place in flask G is known as

- A. hydrolysis
- B. double decomposition
- C. dehydration
- D. pyrolysis
- 48. The caustic soda solution in the conical flask serves to
 - A. dry ethene
 - B. remove carbon (1V) oxide from ethene
 - C. remove carbon (11) oxide from ethene
 - D. remove sulphur (1V0 oxide from ethene.
- 49. Which of the following orbital of carbon are mixed with hydrogen in methane?
 - A. 1s and 2p
 - B. 1s and 2s
 - C. 2s and 2p
 - D. 2s and 3p
- 50. Which of the following reagents will confirm the presence of instaurations in a compound?
 - A. Fehling's solution
 - B. Bromine water
 - C. Tollen's reagent
 - D. Benedict's solution

Chemistry 1995

1.	Chromatography is us mixtures which differ	in their rate	es of	10.	Which letter represents a non-metal that is a solid at
	A. diffusion	B.	migration		room temperature?
	C reaction	D.	sedimentation.		A. T B. R C. J. D. X.
2.	Which of the following change? A. Dissolution of B. Rusting of iron C. Melting of ice. D. Separating a mixtur	f salt in wa	ter.	11.	In the oil drop experiment, Milikan determined the A. charge to mass ratio of the electron B. mass of the electron C. charge of the electron D. mass of the proton.
3.	The number of hyperteraoxosulphate (VI) at A. 3.01 x 10 ²² C. 3.01 x 10 ²³ (S = 2.00)	acids is B. 6.0 D. 6.0	ions in 4.9 g of 2×10^{22} 2×10^{22} 2×10^{22} . H=1, N _A =6.02 x 10 ²³).	12.	The stability of ionic solids is generally due to the A. negative electron affinity of most atoms B. crystal lattice forces C. electron pair sharing D. positive ionization potentials.
4.	What volume of oxyger of hydrogen with 20 cm A. 10 cm ³ C. 14 cm ³			13.	Which of the following statements is FALSE about isotopes of the same element? A.They have the same number of electrons in their outermost shells. B. they have different atomic masses.
5.	A gas sample with init and allowed to expan allowed to expand to What is the ratio of the initial absolute tem	nd to 9.75 9.75 dm³ a e final abs perature?	dm3 is heated and at constant pressure. olute temperature to		C. They have the same atomic number and the same number of electrons.D. they have the same atomic number but different number of electrons.
	A. 3:1 D. 8:3	B. 5:2	C. 5:4	14.	Helium is often used in observation balloons because it is
6.	Two cylinders A and B and nitrogen respective pressure. If there are a mass of oxygen is A. 3.2 g	ely at the sa	ame temperature and		A. light and combustibleB. light and non-combustibleC. heavy and combustibleD. heavy and non-combustible.
7.	C. 80.0g A liquid begins to boil A. its vapour pressure its solid at the given to B. molecules start esca C. its vapour pressure D. its volume is slightl	D. when is equal to emperature uping from equals the	o vapour pressure of the clits surface atmosheric pressure	15.	When plastic and packaging materials made from chloromethane are burnt in the open, the mixture of gases released into the atmosphere is most likely to contain A. ethane B. chlorine C. hydrogen chlorine D. ethane.
8.	A particle that contain electrons could be wrong the A. 16 O C. 17 O O O O O O O O O O O O O O O O O O O	ns 8 protor		16. 17.	Deliquescent substances are also A. efflorescent B. anhydrous C. hydroscopic D. insoluble. The difference between colloids and suspensions is
9.	Use the section of below to answer quantum and the section of the letters and gas respectively? A. Mand E. C. Rand L.	uestions 9	and 10. L E E 10 17 18	18.	brought out clearly by the fact that while colloids A. do not scatter light, suspensions cannot be so separated B. can be separated by filteration, suspension cannot be separated C. can be separated by a membrane, suspensions cannot D. do not settle out on standing, suspensions do. In general, an increase in temperatue increases the
	C. R and L.		D. G and L.	18.	In general, an increase in temperatue increases the solubility of a solute in water because

B. most solutes

dissolve with the evolution of heat		B. Condensation of water vapour.
C. more solute molecules dissociate at higher		C. Boiling a sampled of water
temperature		D. Cooling a saturated solution.
D. most solutes dissolve with absorption of		-
heat.	30.	Which of the following equibrai is shifted to the
Neutralization involves a reaction between H ₃ O ⁺ and		right as a result of an increase in pressure?
A. CI B. OH C.		$A. H_{2(g)} + I_{2(g)} \longrightarrow 2H_{(g)}$
D. CO_3^2 .		$B.2N_2O_{2(\sigma)} \longleftrightarrow N2O_{4(\sigma)}$
Which of the following solutions will have a pH < 7 ?		$C.PCl_{5(g)} \longleftrightarrow PCl_{3(g)} + Cl_{2(g)}$
A. $Na_2SO_{4(aq)}$ B. $NaCI_{(aq)}$		$D. 2O_{3(g)} \longleftrightarrow 3O_{2(g)}.$
C. $Na_2^2CO_{3(aq)}^{(aq)}$ D. $NH_4CI_{(aq)}^{(aq)}$	31.	The arrangement above can be used for the collection of
What is the pH of a 2.50 x 10 ⁻⁵ M solution of sodium		A. sulphur (IV) oxide
hydroxide?		B. ammonia
A. 3.6 B. 5.0		C. nitrogen
C. 9.4 D. 12.0.		D. hydrogen chloride.
14		
12	32.	1
10		
8 /		N -311
6		Energy Con Control of the Control of
25VOL OF BASE		IZNEL
The graph above shows the pH changes for the titration		
of a		Reaction Coordinates
A. strong acid versus strong base		
B. weak acid versus strong base		The activation energy of the uncatalysed reaction is
C. strong acid versus weak base.		A. x
D. weak acid versus weak base.		B. $x + y$
In the process of silver-plating a metal M, the metal M		C. x-y
is the		D. y
A. anode and a direct current is used	33.	It can be deduced that the rate of the reaction
B. cathode and an alternating current is used		A. for path I is higher than path II
C. anode and an alternating current is used.		B. for path II is higher than path I
D. cathode and a direct current is used.		C. is the same for both paths at all
How many moles of copper would be deposited by		temperatures
passing 3F of electricity through a solution of copper		D. depends on the values of both x and y at all
(II) tetraoxosulphate (VI)?		pressures.
A. 0.5 B. 1.0	24	
C. 1.5 D. 3.0	34.	In the industrial production of hydrogen from natural
(F=96500 C mol-1).		gas, carbon (IV) oxide produced along with the
$2Cl_{-(aq)}$, $Cl_{2(g)} = 2e_{-(aq)}$. The above half-cell reaction		hydrogen is removed by
occurring at the anode during the electrolysis		A. washing under pressure
of dilute ZnCI ₂ solution is		B. passing the mixture into the lime water
A. ionization B. oxidation		C. using ammoniacal copper (I) chloride
C. reduction. D. recombination.		D. drying over phosphorus (V) oxide.
Which of the following is a redox reaction?	25	Colon and the formation the all latest This answer
A. $KCI_{(ag)} + H_2SU_{4(aq)} \longrightarrow KHSU_{4(aq)} + HCI_{(aq)}$	35.	Sulpur exists in six forms in the solid state. This property
D. $\angle \Gamma \in DI_{2(ag)} + DI_{2} \longrightarrow \angle \Gamma \in DI_{3(aq)}$		is known as
$AgNO_{3(ag)} + FeCI_3 \rightarrow AgCI_{(aq)} + CO Fe(NO_3)_{3(aq)}$		A. isomerism B. allotrophy
A. $KCI_{(ag)} + H_2SO_{4(aq)} \longrightarrow KHSO_{4(aq)} + HCI_{(aq)}$ B. $2FeBr_{2(ag)} + Br_{2(} \longrightarrow_{l} 2FeBr_{3(aq)} + CO Fe(NO_{3})_{3(aq)}$ $- AgNO_{3(ag)} + FeCI_{3} \longrightarrow_{l} 3AgCl_{(aq)} + CO Fe(NO_{3})_{3(aq)}$ D. $H_2CO_{3(aq)} \longrightarrow H_2O(1) + CO_{2(g)}$ $- Cr_2O_{7}^{-2}{}_{(aq)} + 14H^{+}_{(ag)} + 6I_{(aq)}^{-1} \longrightarrow_{l} 2Cr_{3}^{3+}{}_{(ag)} + 3I_{2(g)} + 7H_2O^{(1)+}$		C. isotopy D. isomorphism.
$C1_2O_7$ (aq) + 14 Π (ag) + $O1$ (aq) + $O1$ (ag) +	36.	A goe that will turn arongo notoccium
The change in the oxidation number of oxygen in the	30.	A gas that will turn orange potassium
equation above is		heptaoxodichromate (VI) solution to clear green is
A. O. B. 1 C. 2 D. 7.		A. sulpur (VI) oxide

hydrogen sulphide

Which of the following ions will give a white precipitate

with aqueous NaOH and soluble in excess of the base?

B.

D.

 $Mg^2 \\$

 Cu^{2+} .

sulpur (IV) oxide

D. hydrogen Chloride.

 Ca^{2+}

 Zn^{2+}

C.

A.

C.

37.

19.

 NO_3^{-} 20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

A. B.

C.

D.

A.

entrophy?

proceed favourably in the forward reaction at

low temperature

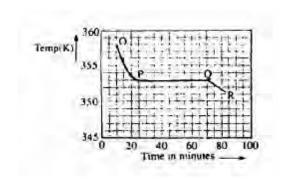
all temperatures

all pressures.

high temperatures

If an equilibrium reaction has "H < O, the reaction will

Which of the following processes lead to increase in


mixing a sample of NaCl and sand

38.	In the extraction of iron in the blast furnace, limestone	45.		atic and aliphatic h		
	is used to		_	guished from each		y the
	A. release CO ₂ for the reaction		A.	action of bromin		
	B. reduce the iron		B.	use of polymeri	zation r	eaction.
	C. Increase in the strength of Iron		C.	Action of heat		
	D. remove impurities.		D.	Use of oxidation	reactio	on
39.	Which of the following compound will impart a brick-red colour to a non-luminous Busen flame?	46.	The ro	ole of sodium chlor	ide in th	ne preparation of soap
	A. NaCl B. LiCl		A.	purify the soap)	
	C. CaCl, D. MgCl.		B.	separate the soa		glycerol
	2		C.	-	-	sition of the fat or oil
40	Group 1 A metals are not found free in nature because they		D.	react with glyce	rol.	
	A. are of low melting and boiling points		CI	H ₃ CH ₂ =CH ₂ -C - H	I	
	B. have weak metallic bonding	45	773 1 C			
	C. conduct electricity and heatD. are very reactive.	47.	The fu above		presente	ed in the compound
			A.	alkanol	B.	alkanal
41.	$CH_3COOH + CH_3CH_2OH \xrightarrow{Conc H} SO X + Y. X and Y in the$		C.	alkanone	D.	alkanoate
	reaction of above are respectively					
	A. CH ₃ COCH ₃ and H ₂ O	48.	C H +	$4O_{2}$ $3CO_{2} + 2$	2H,O. T	he hydrocarbon,
	B. $CH_3^3CH_2COCH_2$ and H_2O_2		$C^{x}H^{y}$ i	$^{\circ}4O_2$ $^{\circ}3CO_2 + ^{\circ}2$ n the reaction abo	ve is	,
	C. $CH_3 COOCH_2 CH_3$ and H_2O_3		A. y	propane	B.	propene
	D. CH ₃ CH ₂ CHO and CH ₄ .		C.	propyne	_	propanone.
	3 2 4			r		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
42	$CHCl_3 + Cl_2 \longrightarrow HCl + CCl_4$. The reaction above is an	49.	An exa	ample of a seconda	ry amin	
	example of		A.	propylene	B.	di-butylamine
	A. an addition reaction		C	. methylamine	D.	trimethylamine.
	B. a substitution reaction			•		·
	C. chlorination reaction	50.	The re	latively high boilin	g point	s of alkanol are due to
	D. a condensation reaction.		A.	ionic bonding	01	
			B.	aromatic charact	ter	
43.	$CH_3 - CH - CH = CH - CH_3 CH_3$. The IUPAC		C.	covalent bondin		
13.	nomenclature for the compound above is		D.	hydrogen bondi		
	A. 1.1-dimenthyilbut –ene		D.	nydrogen bondi	ng.	
	B. 2-methlypnet 3 –ene					
	C. 4,4 –dimethy –1but –2 –ene					
	D. 4 – methylpent –2 – ene.					
44.	Which of the following pairs has compounds that are isomers?					
	A. propanal and propanone					
	B. ethanoic acid and ethylmethanoate					
	C. ethanoic acid and thane –1, 2 –diol					
	,					
	D. 2 –methylbutnae and 2,2 –dimethylbutane					
	Chemist	try	1997			
1	25 cm ³ of hydrogen was sparked with 12 cm ³ of	2.	2.85 g	of an oxide of cor	ner gav	ve 2.52g of copper on

- 35 cm³ of hydrogen was sparked with 12cm³ of oxygen at $110^{\rm o}\,\text{C}$ and $760\,\text{mm}$ Hg to produce steam. What percentage of the total volume gas left after the reaction is hydrogen
 - 11% A.
- B. 31%
- C. 35%
- D. 69%

- 2.85 g of an oxide of copper gave 2.52g of copper on reduction and 1.90 g of another oxide gave 1.52 g of copper on reduction. The data above illustrates the law of
 - constant composition A.
 - B. conservation of mass
 - C. reciprocal proportions
 - D. multiple proportions.

Use the graph below to answer question 3 and 4

A sample, X, solid at room temperature, was melted, heated to a temprature of 358 K and allowed to cool as shown in OPQR.

- The section PQ indicate that X is
 - a mixture of salt
 - B. a hydrated salt
 - C. an ionic salt
 - D. a pure compound.
- The section OP suggests that X is in the
 - A. Liquid state
 - B. Solid/liquid state
 - C. Solid state
 - D. Gaseous state.
- An element, X, format a volatile hydride XH³ with a vapour density of 17.0. The relation mass of X is
 - 34.0 A.
- B. D.
- 31.0

- C. 20.0
- 14.0
- 6. A mixture of 0.20 mole of Ar. 0.20 mole of N^2 and 0.30 mole of He exerts a total pressure of 2.1 atm. The partial pressure of He in the mixture is
 - A. 0.90 atm
- B. 0.80 atm
- C. 0.70 atm
- D. 0.60 atm
- 7. If 30cm³ of oxygen diffuses through a porous plug in 7s, how long will it take 60 cm3 of chlorine to diffuse through the same plug
 - A. 12 s
- B. 14 s
- C. 21 s
- D. 30 s
- The temperature of a body decreases when drops of liquid placed on it evaporates because
 - the atmospheric vapour pressure has a cooling effect A. on the body
 - a temperature gradient exists between the drops of В. liquid and the body
 - C. the heat of vapourization is drawn from the bodycausing it to cool
 - the random motion of the liquid molecules causes a D. cooling effect on the body.
- The electron configuration of two elements with similar chemical properties are represented by
 - A. $Is^22s^22p^5$ and Is^22s^22p4
 - B. $Is^22s^22p^4$ and $Is^22s^22p^63s^1$
 - C $Is^22s^22p^63s^1$ and Is^22sI
 - Is²2s² 2p⁴ and Is²2sI D.

- 10. In the periodic table, what is the property that decrease along the period and increases down the group
 - Atomic number A.
 - B. Electron affinity.
 - C. Ionization potential
 - D. Atomic radius.
- Two elements, P and Q with atomic numbers 11 and 8 11. respectively, combine chemically values of x and y are
 - A. 1 and 1 C. 2 and 1
- B. D.
- 1 and 2 3 and 1
- Oxygen is a mixture of two isotopes ¹⁶ O and ¹⁸ O with 12. relative abundance of 90% and 10% respectively. The relative atomic mass of oxygen
 - A. 16.0
- 16.2
- C. 17.0
- D. 18.0
- 13. 200cm³ of air was passed over heated copper in a syringe several times to produce copper (11) oxide. When cooled the final volume of air recorded was 158cm³. Estimate the percentage of oxygen in the air.
 - A. 31%
- B. 27%
- C. 21%
- D. 19%
- 14. Which of the following gases is the most dangerous pollutant
 - A. Hydrogen sulphide
 - B. Carbon (1V) oxide
 - C. Sulphur (1V) oxide
 - D. Carbon (11) oxide
- 15. A major process involve in the softening of hard water is the
 - A. conversion of a soluble calcium salt to its trioxocarbonate (1V)
 - B. decomposition of calcium trioxocarbonate
 - C. conversion of an insoluble calcium salt to its trioxocrbonate (1V)
 - D. oxidation of calcium atom to its ions.
- 16. On recrystallization, 20g of magnesium tetraoxosulphate (V1) forms 41 g of magnesium tetraoxosulphate (1V) crystals, MgSO₄.yH₂O. The value of y is
 - A. 1
- B.
- C.
- D. 7
- (Mg = 24, S=32, O=16, H=1)
- 17 A satyrated solution of AgCI was found to have a concentration of 1.30 x 100⁻⁵ mol dm⁻³. The solution product of AgCI. therefore is.
 - 1.30x 10-5 mol 2 dm-6 A.
 - B. 1.30 x 10-7 mol2 dm-6
 - C. 1.69 x 10-10 mol2 dm-6
 - D. 2.60 x 10-12 mol2 dm -6
- 18. The hydroxyl ion concentration, (OH-), in a solution of sodium hydroxide of pH 10.0 is
 - 10^{-10} mol dm⁻³ A.
 - B. 10⁻⁶ mol dm⁻³
 - C. 10⁻⁴ mol dm⁻³
 - 10-2 mol dm-3 D.

19.	Which of the aqueous solution with the pH values below
	will liberate hydrogen when it reacts with magnesium
	metal?

13.0 B. 7.0 A. C. 6.5 D. 3.0

Given that 15.00cm3 of H2SO4 was required to 20. completely neutralize 25.00 cm3 of 0.125 mol dm-3 NaOH, calculate the molar concentration of the acid solution.

> A. 0.925 mol dm-3 B. 0.156 mol dm-3 C. 0.104 mol dm-3 D. $0.023 \, \text{mol dm} - 3$

21. When platinum electrodes are used during the electrolysis of copper (11) tetraoxosulphate (1V) solution, the solution gets progressively

> A. acidic B. basic C. neutral D. amphoteric

How many faradays of electricity are required to deposit 22. 0.20 mole of nickel, if 0.10 faraday of electricity deposited 2.98 g of nickel during electrolysis of its aqueous solution?

> 0.20 B. 0.30 A. C. 0.40 D. 0.50

> > (Ni=058.7, IF=96500C mol-1)

23. What is the oxidation unmber of Z in K₂ ZCI⁶?

> A. -3 B. +3 C. -6 D.

 $2H_{2}S(g) + SO_{2}(g) + H2O_{(1)} \longrightarrow 3S(s) + 3H_{2}O(1)...(I)$ 24. $3CuO(s) + 2NH_{2}(g) \longrightarrow 3Cu(s) + 3H2(1) + N_{2}(g)...(ii)$ In the equation above, the oxidizing agent in (I) and the reducing agent in (ii) respectively are

> H₂S and NH₂ Α SO, and CuO В C. SO, and NH, H,S and CuO D.

25. $2SO_3(g)+O_2(g) \iff 2SO_3(g)$

> In the reaction above, the standard heats of formation of $SO_{2}(g)$ and $SO_{2}(g)$ are -297 kJ mol-1 and -396 kJ mol-1 respectively.

The heat change of the reaction is

A. -99 kJ mol-1 B. -198 kJ mol-1 C. +198 kJ mol-1 D. +683 kJ mol-1

 $\frac{1}{2}$ N2(g) +1/2 O2(g); H-= 89 kJ mol-1 26.

> If the entropy change for the reaction above at 25°C is 11.8 J, calculate the change in free energy, G, for the reaction at 25°C

88.71 KJ A. B. 85.48 kJ C. $-204.00 \, \text{kJ}$ D. $-3427.40 \,\mathrm{kJ}$

27. If the rate law obtained for a given reaction is rate=k(X)n(Y)m, what is the overall order of the reaction?

> A. nm B. n m C. n+m D. n-m

28. One method of driving the positon of equilibrium of an endothermic reaction forward is to

> increase temperature at constant pressure A. B.

decrease pressure at constant temperature

C. cool down the apparatus with water

D. decrease temperature at constant pressure.

Oxidation of concentrated hydrochloric acid with 29. manganese(1V) oxide liberates a gas used in the

> A. manufacture of tooth pastes

B. treatment of simple goiter

C. valcanization of rubber

sterilization of water. D.

 $mE + nF \longrightarrow pG + qH$ 30.

In the equation above, the equlibrium constant is given by

A. (E)m(F)n(G)p(H)q

B. (E)(F)(G)(H)

C. (G)p(H)q(E)m(F)n

D. (G)(H)(E)(F)

31. A compound that will NOT produce oxygen on heating is

potassium dioxonitrate (111)

B. lead (1V) oxide

C. potassium trioxochlorate (V)

potassium trioxochlorate (V) D.

32. Coal gas is made up to carbon (11) oxide, hydrogen and

> A. nitrogen B. air C. D. argon methane

33.

In the diagram above, the gas Y could be

A. hydrogen chloride

B. oxygen

C. carbon (1V) oxide

D. chlorine.

 $2X_{(aq)}^{-} + MnO2_{(s)} + 4H_{(aq)}^{+} \longrightarrow X_{2(g)}^{-} + Mn^{2+}_{(aq)} + 2H_{2}O_{(1)}^{-}$ 34.

The reaction	above can	be used	for the	e laboratory
preparation of	all haloger	is except f	luorine	because it is

- A. a poisonous gas
- B. an oxidizing agent
- C. electronegative in nature
- D. highly reactive.

The reaction that occurs during the laboratory test for 35. the presence of tetraoxosulphate (V1)

A.
$$SO_{4(aq)}^{2-} + Ba_{(aq)}^{2-} \frac{dilhno_{3}}{BaSO_{4}}$$

B.
$$Cu_{(s)} + 4H^{+}_{(aq)} + 2SO^{2-}_{4(aq)}$$
 $CuSO_{4}(s) + 2H_{2}O_{(1)} + SO_{2(g)}$

C.
$$4H^{+}_{(aq)} + 2SO2-4(aq) + 2e^{-} \longrightarrow SO^{2-}_{4(aq)} + 2H^{2}O_{(1)} \\ + SO_{2(g)}$$

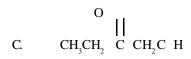
$$D. \hspace{1cm} CuO_{(s)} + 2H^{\scriptscriptstyle +}_{(aq)} + SO^{\scriptscriptstyle 2}_{\stackrel{}{}_{4(aq)}} \longrightarrow CuSO_{4(aq)} + H_{\scriptscriptstyle 2}O_{(1)}$$

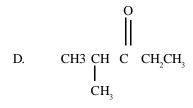
- 36. The removal of rust from iron by treatment with tetraoxosulphate (V1) acid is based on the
 - hydrolysis of the iron A.
 - B. reaction of acid with base
 - C. oxidation of the rust
 - D. dehydration of the iron.
- 37. Which of the following additives could improve the quality of steel?
 - Silicon A.
- B. Sulphur and phosphorus
- C. Carbon.
- D. Chromium and nickel.
- Sodium hydroxide is prepared commercially from 38. sodium chloride solution by.
 - A. electrolysis using mercury as cathode
 - hydrolysis in steam using a catal.yst B.
 - C. electrolysis using iron as anode
 - treating sodium chloride with ammonia and D. carbon (1V) oxide.
- 39 A sample of a substance containing only C and H burns in excess O₂ to yield 4.4 g of CO₂ and 2.7 g of H₂O. The empirical formular of the substance is
 - A. CH,
- C. CH_{A}
- D. C,H,
- (C=12, O=16, H=1)
- 40. An undesirable paraffin in the petroleum industry which is particularly prone to knocking is
 - iso-octane A.
 - B. n-heptane
 - C. iso-heptane
 - D. n-octane

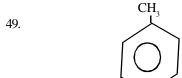
The IUPAC nomenclature of the organic compund with the above structural formular is

- 3-ethyl-2, 5-dimethylhexane A.
- B. 4-ethyl-2, 5-dimethylexane

- C. 3-ethyl-1, 1, 4-trimethypentane
- D. 3-ethyl-2,5,5-trimethypentane
- 42. The reaction of an alkanol with an alkanoic acid in the presence of concentrated H₂SO₄ will produce an
 - A. Alkanal
 - Alkanonate B.
 - C. Alkanone
 - D. Alkayne.
- 43. The final product of the reaction of ethyne with hydrogen iodide is
 - A. CH_3 — CHI_3
 - B.
 - $CH_2^{3}I \longrightarrow CH_2^{2}1$ $CH_3 \longrightarrow CI_3$ C.
 - D CH,=CHI

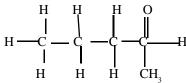

How many more isomers of the compound above can be obtained?


A. 5


44.

- B. 4
- C. 3
- 2 D.
- Synthesis detergents are preferred to soap for laundry 45. using hard water because
 - detergent are water soluble while soap not A.
 - B. the calcium salts of detergent are water soluble
 - C. the magnesium salt of soap is soluble in hard
 - D. soap does not have a hydrocarbon terminal
- 46. The synthetic rubber obtained by the polymerization of chlorobutadiene in the presence of sodium is called
 - Teflon A.
- B. Isoprene
- C. Polythene
- D. Neoprene
- 47. 25cm³ of 0.02 M KOH neutralized 0.03 g of a monobasic organic acid having the general formula C_nH_{2n+1}COOH. The molecular formula of the acid is
 - **HCOOH** A.
- C_2H_2COOH B.
- C. СН,СООН
- D. C₂H₂COOH
 - (C=12, H=1, 0=16)
- 48 When Fehling's solution is added to two isomeric carbonyl compounds X and Y with the molecular formula C₅H₁₀O, compound X gives a red precipitate while Y does not react. It can be inferred that X is

B. CH, CH, CH, CH, C-H


The compound above contains

sp³ hybridized carbon atoms only A.

B. sp³ hybridized carbon atoms only

C. sp³ and sp hybridized carbon atoms

D. sp³ and sp² hybridized carbon atoms.

The compound above is the product of the oxidation of

A. 2 - methylbutan - 2 - ol

B. 2 - methylbutan - 1 - o 1

C. 2.3 - dimenthylpropan - 1 - o1

D. Pentan -2 - 01

Chemistry 1998

9.

50.

1. The addition of water to calcium oxide leads to

a physical change A.

> B. a chemical change

C. the formation of mixture

D. an endothermic change.

2. A mixture of iron and sulphur can be separated by dissolving the mixture in

> steam A.

B. dilute hydrochloric acid

C. dilute sodium hydroxide

benzene

3. 8.0 g of an element X reacted with an excess of copper (11) tetraoxosulphate (1V) solution to deposit 21.3 g of copper. The correct equation for the reaction is

A.

B.

C.

 $\begin{array}{c} X_{(s)} + \text{CuSO}_{4(aq)} & \longrightarrow \text{Cu}_{(s)} + \text{XSO}_{4(aq)} \\ X_{(s)} + 2\text{CuSO}_{4(aq)} & \longrightarrow 2 \text{Cu}_{(s)} + \text{X}(\text{SO}_{4})_{(aq)} \\ 2X_{(s)} + 2\text{CuSO}_{4(aq)} & \longrightarrow \text{Cu}_{(s)} + X_2(\text{SO}_{4})_{(aq)} \\ 2X_{(s)} + 3\text{CuSO}_{4(aq)} & \longrightarrow 3\text{Cu}_{(s)} + X_2(\text{SO})_{3(aq)} \end{array}$ D.

 $C_3H_8(g) + 5O_2(g) \longrightarrow 4H_2O(g) + 3CO_2(g)$ 4.

> From the equation abovem the volume of oxygen at s.t.p. required to burn 50cm3 of propane is

250cm3 A.

150cm³ B.

C. 100cm³ D. 50cm3

5. 30cm3 of hydrogen was collected over water at 27°C and 780 mm Hg. If the vapour pressure of water at the temperature of the experiement was 10mm Hgm calcuale the volume of the gas at 760mm Hg and 7°C.

> 40.0cm³ A.

35.7cm³ B.

C. 28.4cm3 D. 25.2cm3 6. A given amount of gas occupies 10.0 dm3 at 4 atm. and 273°C. The number of moles of the gas present is

> A. 0.089 mol

B. 1.90 mol

C. 3.80 mol

D. 5.70 mol

[Molar volume of gas at s.t.p.= 22.4 dm³]

7. If sulphur oxide and methane are released simultaneously at the opposite ends of narrow tube, the rates of diffusion R_{so2} and R_{CH4} will be in the ratio

A.

C. 1:2

[S=32, O=16, C=12, H=1]

8. A solid begins to melt when

> A. constituent particles acquire a greater kinetic

> energy of vibration of particles of the solid is B. less than the intermolecular forces

> C. Constituent particles acquire energy of the above the average kinetic energy

> D. energy of vibration of particles of the solid equals the intermolecular forces.

The diagram above represents an atom that can combine

			_	st ionization energy?				$[M_{i}]$	g = 24, CI = 35.5
	A.	2, 8, 7	В.	2, 8, 8, 1					
	C.	2, 8, 8, 2	D.	2, 8, 8, 7	18.	-		-	a colloid in which a
						A.	Liquid is dispe		
11.			e simple h	ydrogen spectrum are		B.	Solid is dispers		-
	due t	o emission of				C.	Gas is disperse		-
	A.	electron from				D.	Liquid is disper	rsed in	liquid.
	B.	energy by pro							
	C.	energy by elec			19.				y mixing 100cm ³ of a 0.1
	D.	neutrons from	the atom					00cm ³	of a 0.2 M solution of
						NaOI			
12				Z and mass number Y		A.	1.3	B.	7.0
		•		entration of neutrons		C.	9.7	D.	12.7
	the re	elevant nuclear eq	uation is						
					20.				aqueous potassium
	A.	$_{x}^{y}X + {}_{o}^{1}n$	→ Y-1	X		tetrac	xosulphate (1V) so	olution	, the current carriers are
			Z+	I		the			
						A.	ions	В.	
	B.	${}^{\scriptscriptstyle Y}{}_{\scriptscriptstyle Z}X+1_{\scriptscriptstyle o}$ n	\rightarrow Y	$^{+1}_{Z}X$		C.	hydrated ions	D.	hydrated electrons
	C.	37. 1	\ v	3 7	21.	Wha	t volume of 0	.1 m	ol dm ⁻³ solution of
		$_{\rm Z}$ $^{\rm y}$ ${\rm X}$ + $^{\rm 1}_{\rm o}$ ${\rm n}$	Z+1	X Z+1					ald be needed to dissolve
		Y V 1 n	Y +	1 v					onate (1V) decahydrate
	D.	$X \times X + 1_0 n$	\longrightarrow	Z-1 A		crysta			•
			•			A.	$20\mathrm{cm}^3$	B.	$40\mathrm{cm}_3$
						C.	$80\mathrm{cm}^3$	D.	$100\mathrm{cm}^3$
								[H=	=1, C=12, 0=16,
13.	The 1	property used in o	obtaining	oxygen and nitrogen			S = 32	Na=2	3]
		strially from air is t	the						
	A.	boiling point			22.				rough electrolytic cells
	B.	density					•		⁺ in series. How many
	C.	rate of diffusion	on					ıld be f	formed at the cathode of
	D.	solubility				each			
	_					A.		1.2 m	oles of Cu and 1.2 moles
14.		• •	_	as jar and the residual		_	of AI		
				concentrated KOH		B.		, 0.6 m	ole of Cu and 0.4 mole of
				before being collected		a	AI		1 60 104 1
		lask. The gases co				C.		la, 2.4 r	noles of Cu and 2.4 moles
	A.			gen and the rare gases		_	of AI		
	B.			I the rare gases		D.		, 2.4 m	oles of Cu and 3.6 moles
	C.	nitrogen and t	_				of AI		
	D.		kide nitrog	gen (1V) oxide and the	22	3371	C 11: 1	٠,	11 1 . 1 . 1 .
		rare gases.			23.		_		d during the electrolysis
15	D			-11) ' (11-17-					V1) when a current of 15
15.			nganate (v11) is often added to			bassed for 193 seco		2.04 -
	impu A.	re water to reduce organic	. iiti			A. C.	1.97 g	B. D.	3.94 g
	A. B.	reduce inorgai	-			C.	5.91 g		19.70g 96 5000C mol ⁻¹]
	Б. С.	destroy bacter					[Au –	<i>71</i> ,1'—	30 3000C IIIOI]
	C. D.	remove perma			24.	Fe -	- Cu ²⁺ -> Fa	2+	Cu
	D.	remove perma	incir marc	iiiegg.	۷٦.	1 C _(s) ¬	$\begin{array}{c} -Cu^{2+} \longrightarrow & Fe \\ From the reacti \end{array}$	໌ _(aq) ⊤ on aho	ove it can be inferred that
16.	Thes	oil around a batter	v manııfac	turing factory is likely		A.	Fe is the oxidiz		
		ntain a high conce				В.	Fe is reduced		
	A.	Ca ²⁺ salts	B.	Pb ²⁺ salts		C.	Cu ²⁺ loses elec	trons	
	C.	Mg ²⁺ salts	D.	AI^{3+} salts.		D.	Cu^{2+} is the oxid		agent.
	<u>ے</u>		ے.			_,	2 one	8	

17.

temperature?

52.0 g

85.5 g

A.

C.

with chlorine to form

A.

B.

C.

D.

10.

a convalent bond

a hydrogen bond

a co-ordinate bond

an electrovalent bond

Which of the following electron configurations

90.0 g of MgCI₂ was placed in 50.0cm³ of water to give a

saturated solution at 298 K. If the solubility of the salt

is 8.0-mol dm⁻³ at the same temperature, what is the

mass of the salt felt undissolve at the given

B.

D.

58.5 g

88.5 g

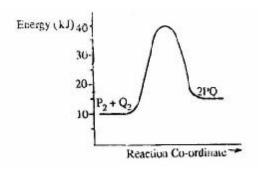
25.	2FeCI2(s) + CI	→ 2FeCI	

The reducing agent in the reaction above is

- A. FeCI.
- B. CI,
- C. FeCI,
- D. Fe

26. The reaction that is accompanied by a decrease in entropy when carried out constant temperature is

- $N_2O_{4(g)} \longrightarrow NO_2$
- $N_2 + 3H \longleftrightarrow 2NH_3$ B.
- $CaCO_3 \leftarrow CaO + CO_7$ C.
- D. $2N_2H_4 \longrightarrow 3N_2 + 4H_2O$


27. 32g of anhydrous copper 11 tetraoxosulphate (1V) dissolved in 1 dm3 of water generated 13.0kJ of heat. The heat of solution is

- 26.0 kJ mol-1 A.
- B. 65.0kJ mol⁻¹
- C. 130.0kJ mol⁻¹
- D. 260.0 kJ mol-1

In the electrochemical series above the strongest reducing agent is

- A. C.
- $Cu_{\scriptscriptstyle{(s)}}$ $\operatorname{Zn}_{(s)}^{\cdot}$
- B. D.
- $Cd_{(s)}$ $Mg_{(s)}$

29.

In the diagram above, the activation energy for the backward reaction is

- +5 kJA.
- B. $+15 \, kJ$
- C. +25kJ
- D. +30kJ

30.
$$2X_{(g)} + Y_{(g)} \longrightarrow Z_{(g)}$$

 $2X_{(g)} + Y_{(g)} \longrightarrow Z_{(g)}$ In the equation above the rate of formation of Z is found to be independent of the concentration of Y and to quadruple when rate equation for the reaction is

- A. R = k[X][Y]
- B. $R=k[X]^2[Y]$
- C. $R = k [X]^2 [Y]^2$
- D. $R = k [X]^2 [Y]^0$

31.
$$2CI_{2(g)} + 2H_2O_{(g)} \longleftrightarrow 4HCI_{(g)} + O_{2(g)} \quad H^o = +115kJ \text{ mol}^{-1}$$

In the above equilibrium reaction a decrease in temperature will.

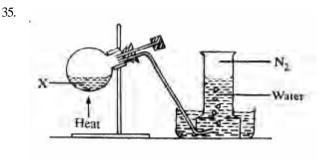
- favour the reverse reaction A.
- B. favour the forward reaction
- C. have no effect on the equilibrium state
- D. double the rate of the reverse reaction

32.
$$3\text{CuO}_{(s)} + 2\text{NH}_{3(g)} \longrightarrow 3\text{Cu}_{(s)} + 3\text{H}_2\text{O}_{(1)} + \text{N}_{2(g)}$$

(i) $2\text{NH}_{3(s)} + 3\text{CI}_{2(g)} \longrightarrow 6\text{HCI}_{(s)} + \text{N}_{(1)} + \text{H}_2\text{O}_{(2)}$

(ii)
$$4NH_{3(s)} + 3CI_{2(g)} + 6H_2O_{(l)} + 2N_{2(g)} + HCl$$

The reactions represented by the equations above demonstrate the


- basic properties of ammonia A.
- B. acidic properties of ammonia
- C. reducing properties of ammonia
- D. oxidizing properties of ammonia.

33. A gas that trun a filter paper previously soaked in lead ethanoate solution black is

- A. hydrogen chloride
- B. hydrogen sulphide
- C. sulphur (1V) oxide
- D. sulphur (VI) oxide.

The precipitate will be insoluble in dilute

- HNO₃ but soluble in ammonia solution A.
- B. HNO and in ammonia solution
- C. HCI but soluble in ammonia solution
- D. HCI and in ammonia solution.

In the experiment above, X could be a solution of

- Sodium, trioxonirate (V) and ammonium A. chloride
- B. Sodium trioxonirate (111) and ammonium chloride
- C. lead (11) trioxonirate (V) and copper turnings
- D. potassium, trioxonirate (V) and copper turnings.

- A. CuO
- B.
 - D.
- Fe,O, ZnO

caldium

PbO,

- В auminium
- C iron
- D. zinc

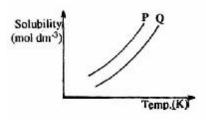
- are extracted by reduction methods Α.
 - В formanly basic oxides
 - C show oxidation states of +2 and +3
 - D. formsoluble hydroxides.

10.	Alloys a A.	are often used in preference to pure metals bacause metals are too hard	46.					be drawn for the non- mula C ₄ H ₁₀ O
	B.	metals are ductile		-)	Α.	1	В.	2
	C.	metallic properties are improved in alloys			C.	3	D.	4
	D.	alloys are a mixture of metals.			-	-		
		•	47.	On cr	acking m	nedicinal	paraffin,	a gas is evolved which
				gives	a pop so	ound with	h a lighte	ed splinter and a oily
		ОН		liquio	d which	decolour	rizes bror	nine solution is also
				obtai	ned. The	products	of the cr	acking are
1 1.	CH_3	CH ₂ CHCH(CH ₃) ₂		A.			xide and a	
				B.			ide and a	
		UPAC nomenclature for the above compound is		C.			and alka	
	A.	4-methylpentan – 3-ol		D.	hydro	ogen gas	and alka	ne
	B.	2-methylpentan –3-0l	40		_			
	C.	3- methylpentan –3 –0l	48.				c compou	nd is
	D.	1,1-dimenthylbutan-2-0l		A.	CH ₆ F	I ₁₃ OH		
12	Dahan	duction of CH CH CH CH CH CH		B.	C_6H_{13}	CI		
12.	Denyo	dration of CH ₃ CH ₂ CH ₂ CH ₂ OH gives		C.	C ₆ H ₅ C			
	٨	CH CH CH CH		D.	C_6H_{14}	1		
	A. B.	CH ₂ - CH - CH - CH ₃	49.	Torvl	ana ic cu	mthaciza	d from at	hane –1, 2- diol and
	D. C.	CH₃CH- CH - CH₂ - CH₃ H - C = C - CH₂ - CH₃	47.				xylic acid	
	D.	CH C-C-CH		A.		ion reacti		Oy .
	D.	CH ₃ C -C-CH ₃		В.		ensation		
13.	nCH.	=CH, O ₂ (initiator) (CH, CH, CH,		C.		nation rea		
	-			D.		itution re		
	The a	bove equation represents the manufacture of						
	A.	rubber B. polythene	50.	Whic	h of the fo	ollowing	is true con	cerning the properties
	C.	polystyrene D. butane		of bei	nezene ar	nd hexan	e?	
				A.	Both	undergo	subtitution	on reaction.
14.		nole of a hydrocarbon contains 6 g of hydrogen.		B.			addtion 1	reaction
		molecular weight is 54, the hydrocarbon is an.		C.		are solid		
	A.	alkanone B. alkane		D.	Both	can deco	lourize br	omine water.
	C.	alkene D. alkyne						
1 5.	The r	products obtained when a pure hydrocarbon is						
T J.	-	products obtained when a pure hydrocarbon is n excess oxygen are						
	A.	carbon and hydrogen						
	B.	carbon and water						
	C.	carbon (11) oxide and hydrogen						
	D.	carbon (1V) oxide and water.						
		` '						
		Chemis	tru	1990	\overline{Q}			
		Citolins	uy					
ı	200	2 1 60 134 1 2 61 1442 2						
l .		3 each of 0.1 M solution of lead (11) trioxonirate	3.					Ill diffuse fastest
		ad hydro chlorioc acid were mixed. Assuming that			-	_	a porous j	. •
		11) chloride is completely insoluble, calculate the of lead (11) chloride that will be precipate.		A.	Propa Meth		B.	Oxygen
	mass (or read (1 1) chroride that will be precipate.		()	wieth	ane	D.	Ammonia

A. 2.78 g B. 5.56 g 8.34 g 11.12 g [Pb = 207, CI = 35.5, N = 14, O = 16]

2. 56.00cm3 of a gas at s.t.p weighed 0.11 g, What is the vapour density of the gas?

A. 11.00 B. 22.00 C. 33.00 44.00 D. [Molar volume of a gas at s.t.p = 22.4 dm3] [H=1, C=12, N=14, O=16]


4. Which of the following will have its mass increased when heated in air?

> Helium B. Magnesium A. Copper pyrites D. C. Glass

5. What is the temperature of a given mass of a gas initially $O^{\circ}C$ and 9 atm, if the pressure is reduced to 3

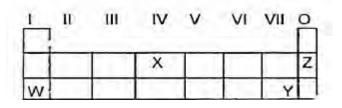
91 K 182 K C. 273 K D. 819 K

6.

In the diagram above, the mixture of the two solid P and Q can be separated by

- distillation A.
- B. fractional distillation
- C. crystallization
- D. fractional crystallization.
- 7. $Mg(s) + 2HCl(aq) \longrightarrow MgCl2(aq) + H2(g)$. From the equation above, the mass of magnesium required to react with 250cm3 of .5 M HCl is
 - A. 0.3 g
- $1.5\,\mathrm{g}$
- C. $2.4\,\mathrm{g}$
- D. $3.0\,\mathrm{g}$
- [M = 27, Cl = 35.5]
- 8. A gaseous metallic chloride MClx consist od 20.22% of M by mass. The formula of the chloride is
 - A. **MCl**
- B. MCl₂

D.

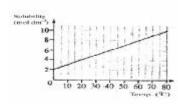

D.

- C. MCl,
- M,Cl
- [M = 27, Cl = 35.5]
- In which of the following are water molecules in the 9. most disorderly arrangement?
 - A. Ice at −10°C
- B. Ice at O°C
 - C. Water at 100°C
- Steam at 100°C
- In order to remove one electron from 3s-orbital of 10. gaseous sodium atom, about 496 kJ mol-1 of energy is required. This energy is referred to as
 - electron affinity A.
- ionization energy B.
- C. activation energy
- D. electronegativity
- Nitrogen obtained from the liquefaction of air has a 11. higher density than that obtained from nitrogen containing compounds because the former contains
 - Water vapour Α
- Oxygen
- C. Carbon (1V) oxide
- D. Rare gases

Use the table below to answer question 13 and 14.

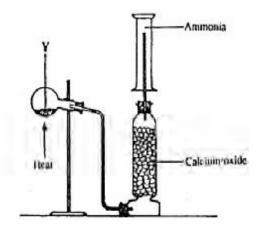
- 12. The method that can be used to convert hard water to soft water is
 - Chlorination
 - B Passage over activated charcoal
 - C. the use of an ion exchange resin
 - D. aeration

Use the table below to answer question 13 and 14



- The element that is likely to participate in covalent 13. rather than ionic bonding is
 - Z A. C. X
- Y B. D. W
- 14. The least reactive elements is
 - W A. Y C.
- X B. Z D.
- 15. ls²2s²2p⁶3s²3p⁶3d⁷4s². An element with the electron
 - configuration above is a A. non-metal
 - B. metal
 - C. transition element
 - D. group two element
- 16. Given that electronegativity increases across a period and decreases down a group in the periodic table, in which of the following compounds will the molecules be held together by the strongest hydrogen bond?
 - HF A.
- NH_(g)
- $\mathrm{CH4}_{(\mathrm{g})}^{(\mathrm{g})}$ C.
- D. HCl_(g)
- 17. 0.25 mole of hydrogen chloride was dissolved in distilled water and the volume made up to 0.50dm3. If 15.00cm3 of the solution requires 12.50 cm3 of aqueous sodium trioxocarbonate (1V0 for neutralization, calculate the concentration of the alkaline solution.
 - A. 0.30 mol dm⁻³
- B. 0.40 mol dm⁻³
- C. 0.50 mol dm⁻³
- D.
 - 0.60 mol dm⁻³
- 18. The correct order of increasing oxidation number of the transition metal ions for the compounds

K₂Cr₂O₂, V₂O₅ and KmnO₄ is


- $V_2O_2 < K_2Cr_2O_2 < KMnO_4$ A.
- B. $K_2Cr_2O_7$, $< KMnO_4 < V_2O_5$
- $KMnO_4 < K_2Cr_2O_7, < V_2O_5$ C.
- $KMnO_4 < < V_2O_5 < K_2Cr_2O_7$ D.
- 19. The set of pollutants that is most likely to be produced when petrol is accidentally spilled on plastic materials and ignited is
 - CO, CO, and SO, A.
 - B. CO, HCl and SO,
 - C. CO, CO, and HCl
 - D. SO₂, CO₂ and HCl
- 20. What is observed when aqueous solution of each of tetraoxosulphate(V1) acid, potassium trioxides (V) and potassium iodine are mixed together?
 - white precipitate is formed A.
 - B. a green precipitate is formed
 - C. The mixture remains colourless
 - D. The mixture turns reddish-brown.

21.

From the diagram above, the mass of crystals

	deposited when 1 dm3 of a saturated solution of NaCl is cooled from 80°C to 60°C is A. 117.00°g B. 58.50°g C. 11.70°g D. 5.85°g [Na = 23, Cl = 35.5]	29.	When a current 1 was passed through an electrolyte solution for 40 minutes, a mass Xg of a univalent metal was deposited at the cathode. What mass of the metal will be deposited when a current 21 is passed through the solution for 10 minutes? A. x/4 g B. x/2 g
22.	The solution with the lowest pH value is A. 5 ml of m/n HCl B. 10 ml of m/n HCl C. 15 ml of m/n HCl D. 20 ml of m/n HCl	30.	C. $2X g$ D. $4X g$ $RS_{(aq)} + HF_{(aq)} \longrightarrow RF_{(s)} + HS_{(aq)} \longrightarrow H = -65.7 \text{ kJ mol}^1$. From the equation above, it can be deduced that. A. the heat content of the reactants is lower than that of the reactants ucts
23.	The solubility product of Cu(lO ₃) ₂ is 1.08 x 10-7. Assuming that neither ions react appreciably with water to form H ⁺ and OH ⁻ , what is the solubility of this salt? A. 2.7 x 10 ⁸ mol dm ⁻³ B. 9.0 x 10 ⁸ mol dm ⁻³ C. 3.0 x 10 ⁸ mol dm ⁻³ D. 9.0 x 10 ⁸ mol dm ⁻³	31.	 B. the heat content of the reactants is higher than that of the products C. the reaction is slow D. a large amount of heat is absorbed. Which of the following statements is true of the electrochemical series? A. Electropositivity of metals increase down the
24.	 The entropy and enthalpy of a system are a measure of A. degree of disorderliness and heat content respectively B. heat content and degree of disorderliness respectively C. heat content of a system only D. degree of disorderliness only. 	32.	B. Electropositivity of non-metals decrease down the series C. Electronegativity of non-metals increase down the series D. Electropositivity of metal decreases down the series The gas that will form a white precipitate with acidified
25.	2SO2(g) + O₂(g) ← 2NO²(g). In the chemical reaction above, the substance that will increase the rate of production of sulphur (V1) oxide is A. manganese (1V)oxide B. finely divided ion C. vanadium (V0 oxide D. nickel	33.	silver trioxonirate (V) is A. NH ₃ B. SO ₂ C. CO ₂ D. HCl Chlorine bromine and iodine resemble one another in that they A. dissolve in alkalis B. react violently with hydrogen without heating C. are liquids
26.	 N₂O₄(g) → 2NO₂g). Increases in total pressure of the equilibrium reaction above will A. Produce more of NO₂(g) in the mixture B. Convert all of N₂O₄(g) to NO₂(g) A. Have no effect on the concentrations of N₂O₄(g) and N₂O₄(g) B. Produce more odf N₂O₄g) in th mixture 	34.	D. displace one another from solutions of their salts. The salt that reacts with dilute hydrochloric which decolourizes acidified purple smelling gas which decolourizes acidified purple potassium tetraoxomanganate(V11) solution is
27.	What quantity of electricity will liberate 0.125 mole of oxygen molecules during the electrolysis of dilute sodium chloride solution? A. 24 125 coulombs B. 48 250 coulombs C. 72 375 coulombs D. 96 500 coulombs [F=96 500C mol ⁻¹]	35.	A. Na ₂ SO ₄ B. Na ₂ SO ₃ C. Na ₂ S D. Na ₂ CO ₃ A pair of compounds that can be used to generate a gas which physiological effect on human beings is A. sodium trioxonirate(V) and calcium chloride B. sodium dioxonitrate (111) and ammonium chloride C. sodium trioxonirate(V) an ammonium chloride D. sodium dioxonitrate (111) and potassium
28.	$X+Y \longrightarrow Z$. The rate equation for the chemical reaction above is $-\Delta [X] = [X]^2 [Y]$ The overall order of the reaction is A. 0 B. 1 C. 2 D. 3	36.	chloride. Hydrogen is used in oxy-hydrogen flames for melting metals because it A. evolves a lot of heat when burnt B. combines explosively with oxygen C. is a very light gas D. is a rocket fuel.

In the diagram above Y is mixture of

- A. Calcium hydroxide and ammonium chloride
- B. Calcium hydroxide and sodium chloride(V)
- C. Sodium chloride and ammonium trioxonirate(V)
- D. Sodium dioxonitrate(lll) and ammonium chloride.
- What properties of duralumin make it more useful than 38. its constituent metals?
 - A. it is heavy with a high melting point
 - B. it is malleable and has high density
 - C. it is strong and light
 - D. it is hard and ductile
- 39. The pair of metals in the reactivity series that are usually extracted by the electrolysis of their ores is
 - Magnesium and zinc A.
 - B. Magnesium and calcium
 - C. Copper and zinc
 - D. Lead and calcium
- 40. A metal that can be extracted from cassiterite is
 - calcium A.
- B. magnesium
- C. tin
- D. copper
- Which of the following metals is passive to 41. concentrated trioxonirate(V) acid?
 - A. iron
- B.
- C. copper
- tin D. zinc
- The hydrocarbon the burns in air with a sooty flame is 42.
 - C_6H_6 A.
- C_3H_6
- C. C_4H_{10}
- D.

B.

- C_6H_6
- 43. 2-methylprop-1-ene is an isomer of
 - but-2-ene A.
 - B. pent-l-ene
 - C. 2-methylbut-ene
 - D. 2-methylbut-l-ene

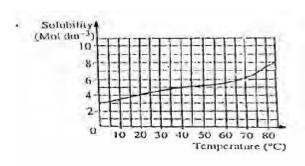
- Which of the following is a solvent for perfumes? 44.
 - C.
 - CH,COOH
- C_4H_6 C,H,OH
- 45. When excess ethanol is heated to 145oC in the presence of concentrated H2SO4 the product is
 - ethyne A.
 - B. diethyl sulphate
 - C. diethyl ether
 - D. acetone
- How many grammes of bromine will saturate 5.2 g of 46. but-1-ene-3-yne?
 - A. $64.0\,\mathrm{g}$
- B. $48.0\,\mathrm{g}$
- C. $32.0\,\mathrm{g}$
- D. $16.0\,\mathrm{g}$
- [C = 12, H = 1, Br = 80]
- 47. Polyvinyl chloride is used to produced
 - bread A.
- B. pencils

C. ink

D. pipes

Ш

- 48. An organic compound that does not undergo a reaction with both hydrogen cyanide and hydroxylamine can
 - A. alkenes
- alkanal B.
- C. alkanone
- D. Alkanoic acid
- 49. When two end alkyl groups of ethyl ethanoate are interchanged, the compound formed is known as
 - A. methylethanoate
 - B. ethyl propionate
 - C. methylpronoste


50.

- D. propel ethanoate.
- - Which of the compounds above would react to take up two molecules of bromine during bromination?
 - 1 only A.
 - 111 only B.
 - C. 1 and 11 only
 - D. 11 and 111 only

Chemistry 2000

1.		xture of iodine a: ated by treatment w		hur crystals can be			C.	Elements in number of e		group have the
	A.	water of filter of		1 <i>*</i>			D			
	B.						D.			erties of the elements
		carbon (1V) sul						tent to decr	ease across	s each period
	C.	ethanoic acid to								
	D.	methanol to filte	er off iod	line	10.		The	e electron configu	ration of $_{22}$	X^{2+} ion is
							A.	$1s^2 2s^2 2p^6 3$	$3s^2 3p^6 4s^2 3q^6$	d^2
2.	Sievir	ng is a technique us	ed to se	parate mixtures			B.	$1s^2 2s^2 2p^6 3$	s ² 3p ⁶ 4s ² 3c	\mathbf{l}^1
	conta	ining solid particle	s of				C.	$1s^2 2s^2 2p^6 3s^2$	$s^2 3p^6$	
	A.	small sizes	B.	large sizes			D.	$1s^2 2s^2 2p^6 3$		
	C.	different sizes	D.	the same size				1	1 1	
					11.		Wh	ich of the follow	ing types o	of bonding does not
3.	Whic	h of the compound	s is cor	nposed of Al, Si, O				olves the formation		
	and H		.5 15 001	p 0.000 01111, 21, 0			A.	Metallic	B.	Covalent
	A.	Epson salt	B.	Limestone			C.	Co-ordinate		
	C.	_	D.	Urea			C.	Co-ordinate	D.	Electrovalent
	C.	Clay	D.	Orea			701		10110	
	50	2 C 1 (11)		1 1 1 1 1 1 1 1 1 1 7 0 2	12.			e knowledge of ha		be used to
4.				xploded with 150cm ³			A.	create an ele		
		containing 20% ox		volume, which of			B.	detect an ele		
		actants was in exce					C.	split an elen	nent	
	A.	Carbon (11) oxid	de				D.	irradiate an	element	
	B.	Carbon (1V) oxi	de							
	C.	Oxygen			13.		The	e shape of CO ₂ ,H ₂	O and CH.	respectively are
	D.	Nitrogen					A.	bent linear a		
		· ·					B.	bent tetrahe		
5.	How t	many moles of HCl	will be r	required to react with			C.	linear bent a		
٥.		sium heptaoxodichi					D.	tetrahedral,		
		of chlorine?	Offiate (v 1) to produce 3			D.	teti aireti ai,	iiiicai aiiu	oent.
		A. 14 B. 12					Tri.		. 41 1 .	C . 1. 1
					14.					i of chlorine atoms in
	C.	11	D.	10					s 0.914 nm.	. The atomic radius of
_	7771		.1 6					orine atom is		
6.				l pressure of a given			A.	0.097 nm		
				e final volume of the			B.	0.914 nm		
	gas if	the initial volume v	vas 300c	cm3 at the same			C.	2.388 nm		
	tempe	erature.					D.	2.388 nm		
	A.	$120{\rm cm}^3$	B.	$200\mathrm{cm}^3$						
	C.	$450\mathrm{cm}^3$	D.	$750{\rm cm}^{3}$	15.		The	e noble gas, argor	i, is used fo	or
							A.	electric are		
7.	The	partial pressure of o	xygen i	n a sample of air is			B.	welding bra		
				is 780mmHg. What			C.	underwater		
		mole fraction of ox		U			D.	steal weldin		
	A.	0.203	В.	0.579			D.	Stear werdin	5	
	C.	2.030	D.	5.790	16.		Λ α	ide effect of soft v	votor is the	\t
	C.	2.030	D.	3.170	10.					11
8.	Tha £			41 41 46.4				it gives offensiv		
0.			nce betv	veen the three states			B.	excess calcium s		
		tter is the						it attacks lead co		
	A.	shape of their pa					D.	it encourages the	e growth o	f bacteria
	B.	number of parti								
	C.	shape of the co			17		Wa	ter molecules can	be ligands	s especially when they
	D.	degree of mover	nent of	their particles			are	bonded to.		
							A.	alkaline eart	h metals	
9.	Whic	h of the following t	he follo	wing statements is			B.	alkali metals	3	
		ct about the periodi					C.	transition m		
	A.			riod have the same			D.	group V11 e		
		number of valer					.	910mb 1110		
	B.			of the elements in the	18.		The	e air pollutant unk	nown in n	ature is
	D.			rogressively across	10.	٨		NO	B.	CO
		the period	rease p	10510551701y ac1055		A. C.		HCHO	ъ. D.	DDT
		me periou				Ų.		ICIO	D.	ועעו

- 10dm³ of distilled water used to wash 2.0 g of a 19. precipitate of AgCl. If the solubility product of AgCl is 2.0 x10⁻¹⁰ moldm⁻⁶, what quantity of silver was lost in the process?
 - A. $2.029 \times 10^{-3} \, mol \, dm^{-3}$
 - 1.414 x 10⁻³ mol dm⁻³ B.
 - C. 2.029 x 10⁻⁵ mol dm⁻³
 - D. 1.414 x 10⁻⁵ mol dm⁻³
- 20. Hydration of ions in solution is associated with
 - absorption of heat A.
 - B. reduction of heat
 - C. conduction of heat
 - D. liberation of heat
- 21.

The diagram above is the solubility curve of solute, X. Find the amount of X deposited when 500cm3 of solution of X is cooled from 60°C to 20°C

B.

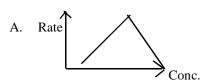
- 0.745 mole A.
- 0.950 mole
- C. 2.375 moles D.
- 4.750 moles.
- $\begin{array}{lll} HCl_{(aq)} + H_2O_{(1)} & \longleftrightarrow & H_3O^+_{(aq)} + Cl_{(aq)} \\ \text{In the reaction above, } Cl_{(aq)}^- \text{ is the} \end{array}$ 22.
 - A. Conjugate acid
 - B. Acid
 - C. Conjugate base
 - D. Base.
- 23. In which order are the following salts sensitive to light?
 - Agl > AgCl > AgBr A.
 - B. AgCl>Agl>AgBr
 - C. AgBr > AgCl > AgI
 - D. AgCl > AgBr > AgI
- 24. Thee pOH of a solution of 0.25 mol dm⁻³ of hydrochloric acid is
 - 12.40 A.
- B.
- 13.40 14.60

- C. 14.40
- D.
- $\begin{array}{l} MnO_{_{4(aq)}} + 8H_{_{(aq)}}^{_{+}} \text{'! } Mn^{2+}(aq) + 4H_{_{2}}O_{_{(1)}} \\ Y \text{ in the equation above represents} \end{array}$ 25.
 - 2e-A.
 - 3e-B.
 - C.
 - D.
- 26. $\frac{1}{2}Zn^{2+}_{(aq)} + e^{-} \longrightarrow \frac{1}{2}Zn_{(s)}$

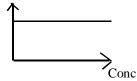
In the reaction above, calculate the quantity of

electricity required to discharge zinc

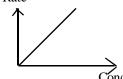
- $0.965 \times 10^{4} \text{C}$ C.
- B. 9.650 x 10⁴ C D.
- 4.820 x 10⁴ C 48.200 x 10⁴ C

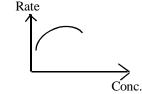

 - $[F = 96500 \text{ C mol}^{-1}]$
- 27. Given that M is the mass of substance deposited in an electrolysis and Q the quantity of electricity consumed, then Faraday's law can be written as
 - A.
 - B.
 - C.
 - E M = QZ
- 28 0.46g of ethanol when burned raised the temperature of 50 g water by 14.3 K. Calculate the heat of combustion of ethanol.
 - +3 000 kJ mol-1 A.
 - +300 kJ mol-1 B.
 - C. -300 kJ mol⁻¹

D.


- -3 000 kJ mol⁻¹
 - [C = 12, O = 16, H = 1]

Specific heat capacity of water = $4.2 \text{ ig}^{-1}\text{K}^{-1}$

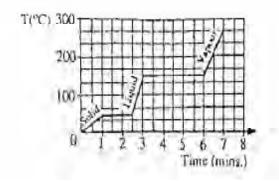

- 29. Powdered marble reacts with hydrochloric acid solution than the granular form because the powdered form has
 - A. more molecules
 - B. more atoms
 - C. large surface are
 - D. relatively large mass
- 30. The graph that describes a zero order reaction is


Rate B.

C. Rate

D.

31.	A. B. in	increase the querease the yield o		ΔN_2		C.	Iron	E	copper	:.
		crease the yield			42.	The	least easily	v oxidized	l of the m	netals below is
		crease the quant			.2.	A.	Ca	y omicized	B.	Na
	D. ac	erease the quant	ity or o ₂			C.	Zn		D.	Al
32.	For a r	eaction in equilib	rium the	e species involved in		C.	211		D.	7 11
32.		ilibrium constan		-	43.	The	repeating ı	unit in na	tural rub	her is
	A.	gaseous and s			٦٥.	A.	alkyn		turar rub	001 15
	В.	liquid and soli				В.	isopre			
	C.	solid and diss	-			C.	_			
	D.	gaseous and d				D.	n-pro	_		
	D.	gascous and c	113301 v Cu	species		D.	neopr	CIIC		
33.	A phe	nomenon where	an eleme	ent exists in different	44.	Uns	aturated o	organic c	ompoun	ds are identified by
	forms	in the same phys	ical state	is known as		deco	lourization	n of.		
	A.	isomerism	B.	amorphism		A.	silve	r broi	mide	and potassium
	C.	allotropy	D.	isotropy			tetrao	xomanga	nate(v11) solution
						B.	brom	ine wate	r and a	cidified potassium
34.	The su	bstance often use	d for vulc	anization of rubber is			tetrao	xomangai	nate(V11) solution
	A.	chlorine				C.	silver	bromine	solution	and bromine water
	B.	hydrogen pero	xide			D.	brom	ine wate	er and a	alkaline potassium
	C.	sulphur					tetrao	xomangai	nate (V11	1) solution.
	D.	tetraoxosulpha	te (V1) a	cid						
					45.	The	conditions	necessar	y for thee	extraction of a water
35.	A gas	that is not associa	ated with	global warming is		mole	ecule form	two mole	cules of e	ethanol are.
	A.	CO,	B.	SO_3		A.	less ac	cid and a	lower ten	nperature
	C.	CH_{4}	D.	Н,		B.	excess	s acid and	a lower	temperature
		·		2		C.	excess	s acid and	a higher	temperature
36.	The re	freshing and cha	racteristi	cs taste of soda water		D.	less ac	cid and a l	higher te	mperature.
	and of	her soft drinks is	s as a res	ult of the presence in						
	them o	f			46.	The	chlorinate	d alkane	often use	d industrially
	A.	carbon(1V)oxi	de			to r	emove gre	ase is		
	B.	carbon(11) oxi	de			A.	tetracl	hlorometh	nane	
	C.	soda				B.	chlore	omethane		
	D.	glucose				C.	trichle	oromethar	ne	
						D.	dichlo	oromethar	ne.	
37.	A forn	n of carbon used	for absor	bing poisonous gases						
	and pu	rification of nob	le gases i	S	47.	The	reaction of	f carbide	with wat	er gives
	A.	wood charcoal	,			A.	ethyn	e	B.	ethane
	B.	animal charcoa	ા			C.	ethan	e	D.	Ethanal
	C.	carbon fibres								
	D.	carbon black.					(C		
38.	Synthe	esic gas is a mixtu	ire of		48.		CH ₃ -CH ₂ -C	COCH ₂ C	CH ₃	
	A.	CH ₄ and H ₂ O				The	compound	above is	an	
	B.	CH_4 and H_2				A.	ether		B.	ester
	C.	CO_2 and H_2				C.	alkana	ıl	D.	alkanol
	D.	CO and H ₂								
					49.	Alka	none are g	generally	obtained	by the oxidation of
39.	Potass	ium vapour burn	s with a			A.	prima	ry alkanol	ls	
	A.	blue-flame				B.	secon	dary alka	nols	
	B.	brick-red flame	•			C.	tertiar	y alkanol	S	
	C.	violet flame				D.	alkano	oic acid		
	D.	golden-yellow	flame							
					50.	Sucr	ose is mad	le up to		
40.	A com	mon characterist	ics of cop	per and silver in their		A.		se and gl	ucose	
		as coinage metal	_	=		B.		se and fro		
	A.	have high meta		=		C.	_	se and fr		
	B.	are not easily o	xidized			D.	galact	tose and g	glucose.	
	C.	are easily oxidi	zed							
	D.	are not easily	reduced							
41.	Haemati	te is an ore of								
	A. Z	inc B.	Lead							


Chemistry 2001

- 1. 25cm³ of a gas X contains Z molecules at 15°C and 75 mm Hg. How many molecules will 25cm³ of another gas Y contain at the same temperature and pressure? A, 2Y, B. 2Z. C. Y, D. Z.
 - What mass of water is produced when 8.0g of

hydrogen reacts with excess oxygen? A. 72.0g, B. 36.0g, C. 16.0g, D. 8.0g

2.

Use the graph below to answer questions 3 and 4

3. How long does it take all the solid to melt?

> A. 6.0mins,

B. 3.0mins,

C.

2.5mins,

D. 1.0min

4. If the gas is cooled, at what temperature will it start to condense?

A.

175°C,

B.

250°C,

C.

125°C,

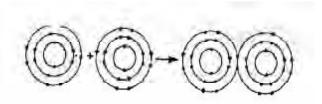
D.

150°C

Four elements W,X,Y and Z have atomic numbers 5. 2,6,16 and 20 respectively. Which of these elements is a meal?

A.

X,


B.

Z,

C.

W,

Y D.

- The diagram above represents the formation of
 - a metallic bond. B. a covalent bond. A.
 - C. an electrovalent bond.

7.

- D a coordinate covalent bond
- An element X with relative atomic mass 16.2 contains two isotopes ¹⁶ X with relative abundance of 90% and ^m X

with relative abundance of 10%. The value of m is

14, A.

B. 12,

C. 18,

D. 16

8. Cancerous growth are cured by exposure to

> A. x-rays,

B. betta-rays,

C. alpha-rays, D. gamma-rays

9. Which of the following statement is correct about the average kinetic energy of the molecules of a gas?

- A. it increases with increase in pressure,
 - B. it increases with increase in temperature,
 - C. It increases with increase in volume,
 - D. It increases at constant pressure.
- 10. Millikan's contribution to the development of atomic theory is the determination of

A. positive rays,

B. cathode rays,

C. charge to mass ratio, D. charge on electron.

11. A particle that contains 9 protons, 10 neutrons and 10 electrons is

A. positive ion

B.neutral atom of a metal

- neutral atom of a non-metal
- D. negative ion.
- 12. An oxide XO₂ has a vapour density of 32. What is the atomic mass of X?

A. 20

32 B.

C. 14

D. 12

13. The chemical used for coagulation in water purification is

- A. copper tetraoxosulphate (VI)
- sodium tetraoxosulphate (VI) B.
- C. aluminium tetraoxosulphate (VI)
- calcium tetraoxosulphate (VI) D.
- 14. Environment pollution is worsened by the release from automobile exhausts of

A. heavy metals

B. water vapour

smoke

D. steam

15. Phosphorus is stored under water to prevent it from

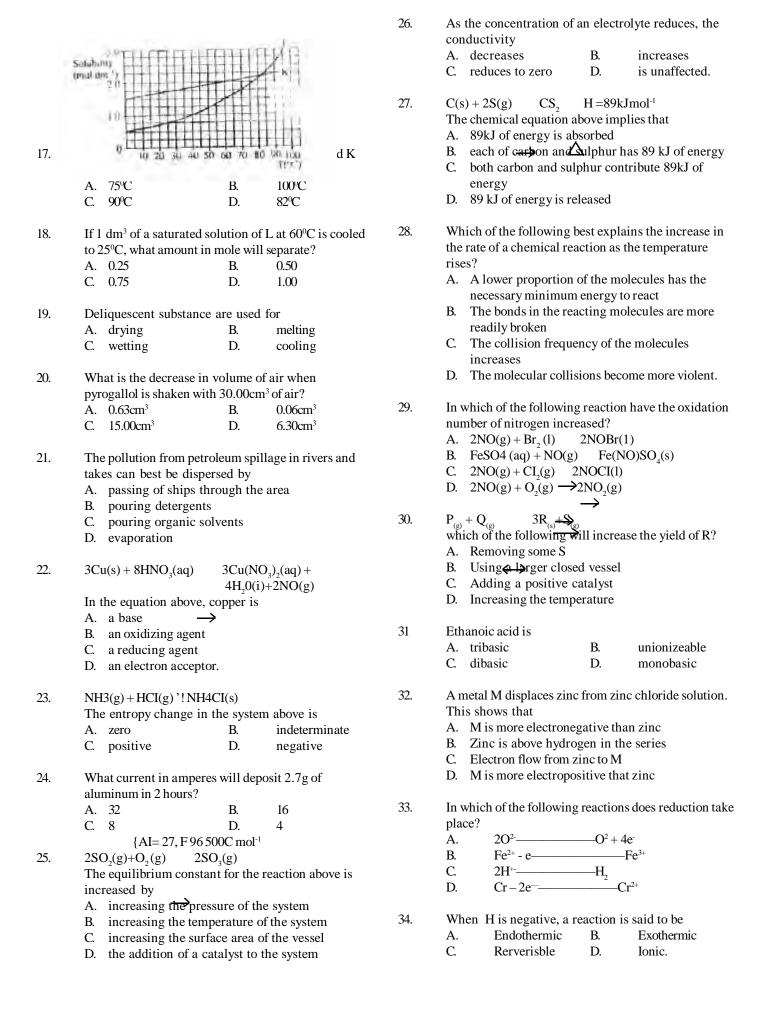
A. smelling

dehydrating B.

catching fire

D. becoming inert

16. Pure solvents are obtained by


A. evaporation

extraction B.

condensation

D.

distillation

	ethyn	ie?				functio	n as	>		
	Α.	sp	B.	sp^3		A.	a reducing ag		3. a catalyst	
	C.	sp^2d	D.	sp^2		C.			D. an oxidizing age	nt
36.	Prote	in in acid solution	n undergo		43.	_			er sulphur is added	to
	A.	Polymorphisn				A.	lengthen the	chain of ru	ubber	
	B.	Hydrolysis				B.	break down ru	ıbber poly	mer	
	C.	Fermentation				C.	act as a cataly	yst		
	D.	Substitution				D.	bind rubber m	olecules	together	
					44.	When s	sodium reacts wi	th water, t	he resulting solutior	ı is
37.		entation is the				A.	Alkaline	B.	Acidic	
	A.	•		ohydrate to glucose		C.	Neutral	D.	Weakly acidic.	
	B.			to carbohydrate	45.	The gor	neral formula fo	r the alker	noleje	
	C.		sugar to a	lcohol in the presence	45.	_	RCOOR ¹	ние анкан В.		
		of yeast				A. C.	RCHO	ъ. D.	R ₁ CO	
	D.		alcohol to	sugar in the presence		C.	RCHO	D.	ROH	
		of yeast.			46.	Which flame?	of the following	g metals b	urns with a brick r	ed
38.	Catal	ytic hydrogenatio	on of benz	ene produces		A.	Ca	B.	Na	
	A.	Cyclohexene	B.	Oil		C.	Mg	D.	Pb	
	C.	Margarine	D.	Cyclohexane.			C			
3 0	A 1		6.1	1 14 4	47.			st be coll	lected by downwa	.rd
39.				compounds with the		displac	ement of air is			
		al formula $C_n 2_n$ is				A.	Chlorine	В.	Sulphur (IV) oxi	de
	A.	Substitution	В.	Esterification		C.	Carbon (IV) or	xide D.	Ammonia.	
	C.	Decarboxylati	ion D.	Polymerization	48.	A trihy	dric alkanol is			
40.	Wher	n chlorine is nass	ed into w	ater and the resulting		A.	Phenol	B.	Glycol	
10.				e products formed are		C.	Glycerol	D.	Ethanol	
	A.	Chlorine gas			49.	Thoma	in immuniterin i	man ana du	min a tha arrtnaatian	o.f
	В.	Hydrochloric			49.		im impurity m i	ron ore at	iring the extraction	OI
	C.			lorate (1) acid		iron is	Calaina tai ana	:1:		
	D.	Oxygen and o				A.	Calcium trioxo			
	D.	Oxygen and o	Accinorati	C(1) acid		B.	Silicon (IV) ox			
41.	Thon	oir of organic co	mpounde t	hat are isomers is		C.	Sulphur (II) or			
+1.	A.	But – 1-ene a				D.	Carbon (IV) or	xide.		
	B.	Ethanol and p			50	A 1	. 11 1		1	
	C.	_	_	tetrachloromethane	50.		ing candle prod		er and	
	D.	Benzene and				A.	carbon (IV) ox			
	D.	Delizelle allu	memyibei	izelle		B.	carbon (IV) ox	ade		
12	СИС) H CO	12C	11UO 1USO		C.	oxygen			
42.	In the	$O_{(s)} + \Pi_2 SO_{4(aq)}$ = reaction above t	etranyosu	$+ 11 H_2 O_{(1)} + H_2 SO_{4(aq)}$ lphate (VI) acid		D.	hydrogen.			
	III tiic	reaction above, t	iciraoxosu	ipilate (VI) acid						
				Chemis	try	2002				
	B.	molecular form	nula			☆ :	empirical form	ula ch other i	n the column	

C. structural formula B. move at different speeds in the column D. general formula C. react with the solvent D. react with each other. 2. Which of the following gases contains the least number of atoms at s.t.p? 4. A compound contain 31.91% potassium, 28.93% 7 moles of argon A. chlorine and the rest oxygen. What is the chemical B. 4 moles of chlorine formula of the compound? C. 3 moles of ozone KClO A. B. KClO, D. 1 mole of butane C. KClO₃ D. KClO₄

- 3. The chromatographic separation of ink is based on the ability of the components to
- 5. A little quantity of trichloromethane (b.pt.60°C) was added to a large quantity of ethanol ((b.pt.78°C). The most probable boiling point of the resultant mixture is from.
 - A $60^{\circ}\text{C} 78^{\circ}\text{C}$ B $69^{\circ}\text{C} 70^{\circ}\text{C}$

	C.	70°C - 74°C	D.	82°C - 84	4°C	15.	The boi as.	ling of fat and aqı	ieous caus	tic soda is referred	to
6.	The g	gas that gives bro	wn colo	uration in	brown ring		A. C.	acidification saponification	B. D.	hydrolysis esterification.	
	A.	CO	B.	NO				•			
	C.	CO_2	D.	NO ₂		16.	Ordin A.	ary glass is manu NaHCO ₃	factured fro B.	om silica, CaCO ₃ a K ₂ SO ₄	nd
7.		h of the following ; NaOH solution?	gives a p	recipitate	when treated		C.	K_2CO_3	D.	Na ₂ CO ₃	
	A.	NH ₄ Cl	B.	Na ₂ CO) ₃						
	C.	AlCl ₃	E	CH ₃ C	OONa						
8.	of a c	eaction of an alken atalyst is			the presence	17.		ОН			
	A. B.	a nucleophilic an addition rea						CH ₃ -C-CH ₂ -C	CH ₃		
	C.	a substitution						CH,			
	D.	an oxidative re					The nabove	najor product of th	e dehydra	tion of the compou	nd
9.	A roc	k sample was adde	ed to colo	d dilute HN	NO ₃ . The gas		A	H H			
		ed was passed into		on of acidi	fied K ₂ Cr ₂ O ₇				OL I		
		ne solution turned ock sample contai						CH ₃ - C-CH ₂	∠H ₃		
	A.	SO_4^{2-}	B.	SO ₃ ² -				CH ₃			
	C.	NO ³⁻	D.	Cl			B.	CH_3 - $C = CH_2$ -	·CH.		
10.		ntermediate processively oxidized t						3 P	3		
		oxodichromate (V						41.3			
	A. C.	methanal ethanal		B. D.	propanal butanal		C.	CU CU CU	CH		
	C.	emanai		D.	Dutanai		C.	CH ₃ - CH-CH	-C11 ₂₃		
11.		CH ₃						CH ₃			
		CH ₃ CH ₂ C-H					D.	CH ₃ CH ₂ CH ₂ C	H_3		
	TO 1	ОН						CH_2			
		compound above i				10	T1	1	C 11.	CH :	
	A. B.	primary alkand secondary alka				18.	A.	umber of isomers	B.	$y C_6 H_{14}$ is	
	C.	tertiary alkano					C.	$\begin{bmatrix} 2 \\ 4 \end{bmatrix}$	D.	5	
	D.	glycol	10					<u>-</u>			
12,	A rad	precipitate of cop	ner (1) c	arbida is f	ormed when	19.		th of these pair omolecules respec		thetic and natur	ral
12,		onium solution co					A.	-	•	ene, creatine a	nd
	into.	~~~					_	haemoglobin			
	A. B.	$CH_3 - C = C - C$ $CH_3 - CH_5 - C$ as					B.	Nylon and ohaemoglobin	creative,	polyethylene an	nd
	C.	CH ₃ = CH ₂ - CH					C.	_	e and cr	eatine, nylon a	nd
	D	$CH_3^2CH_2CH_2C$					ъ.	haemoglobin		-	
13.	The n	nost important use	e of hydi	ogen is in	the		D.	Haemoglobi polyethylene	n and ny	lon, creatine a	nd
10.	A.	manufacture o						polyemyleme			
	B.	manufacture o		lcohol		20.		ample of an elem			
	C.	hydrogenation					A.	nitrogen	В.	chlorine	
	D.	manufacture of	ammon	1a			C.	carbon	D.	bromine	
14.		of the following po		suitable fo	or packaging						
		lectrical insulation		ъ.		21.		l can easily be pro		. •	
	A.	Polyethene	B.	Polystyr			A. D	distillation of			
	C.	Polyamide	D.	Polycarl	omate.		B. C.	catalyst oxida destructive di			
							D.	fermentation (71 WOOd	

	-
22.	Hydrogen is readily released when dilute hydrochloric
	acid reacts with

A. C.

Ag Cu

B. Au D. Na

23. Which of the following statement is true of a proton?

- The mass of a proton is 1.0008 g
- B. The mass of a proton is
- The mass of proton is 1840 times the mass of C. an electron
- D. The total mass of the proton in a particular nucleus is always half the nucleus is always half the nuclear mass.
- 14 C 24. X + B

X in the equation above represents.

 ${}^{14}_{7}N$ A. C.

B.

 12 5 B D.

25. A gas X diffuses twice as fast as gas Y under the same condition. If the relative molecular mass of X is 28, calculate the relative molecular mass of Y

> A. 14 C. 112

B. D.

56 120

Which of the following chlorides would exhibit the least 26. ionic character?

LiCl A. C.

CaCl₂

B. D. MgCl₂ AlCl,

A fixed mass of gas has a volume of 92 cm³ at 3°C. What 27. will be its volume at 18°C if the pressure remains constant?

> 552.0 cm³ A.

97.0 cm³ B.

C. 87.3 cm³ D. 15.3 cm³

28. The processes which return carbon(1V) oxide to the atmosphere include

> Photosynthesis, respiration and transpiration A.

B. Respiration, decay and combustion

C. Photosynthesis, decay and respiration

D. Ozone depletion, combustion and decay.

29. The postulate of Dalton's atomic theory which still hold is that

> all element are made of small indivisible A. particles

> B. particles of different elements combine in a simple whole number ration

> C. atoms can neither be created nor destroy ed

> D. the particles of the same element are exactly alike

30. If 0.75 mole of cyclopropane and 0.66 mole of oxygen are mixed in a vessel with a total pressure of 0.7 atmosphere, what is the partial pressure of oxygen in the mixture?

> 0.22 atmosphere A.

> 0.33 atmosphere B.

C. 0.44 atmosphere

D. 0.55 atmosphere

31. When H₂S is passed into a solution of iron (iii) chloride, the solution turns

> brown A.

B. pale green

C. colourless

D. pale red.

32. Which of the following equations shows that a reaction is in equilibrium?

> G = H - T S A.

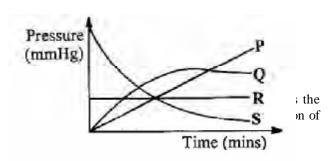
B. G < O

C. G = O

D. G > O

33.

 $\begin{array}{ll} Cu_{2}S_{(s)}+O_{2(g)} & 2Cu_{(s)}+SO_{2(g)} \\ What \ \ \underline{\hspace{0.1cm}} \ \ \text{ the change in the oxidation number of copper} \end{array}$ in the reaction above?


A. **/**Q to +2

B. **1** $\sqrt{2}$ to +1

34.

C. ± 1 to 0

D. +2 to +3

C. R

S D.

E

36.

35. In the reaction E + FG+H, the backward reaction is favoured if the concentration of

> E is reduced A.

B. G is reduced

C. F is increases

D. E is increased

The products of the electrolysis of dilute sodium hydroxide using platinum electrodes are

sodium metal and oxygen gas A.

B. hydrogen and oxygen gases

C. water and hydrogen gas

D. water and sodium metal

37.
$$PCl_{5(g)}$$
 $PCl_{3(g)} + Cl_{2(g)}$

 $\begin{array}{ll} PCl_{_{5(g)}} & PCl_{_{3(g)}} + Cl_{_{2(g)}} \\ \text{In the reaction above, a decrease in pressure will} \end{array}$

- increase the yield of PCl₃ A.
- B. increase the yields of PCl
- C. accelerate the reaction
- D. decelerate the reaction

38.	betwee A. B.	en the speed of a re catalyst activation energ	eaction a	sses the relationship and its	45.	When a salt loses its water of crystallization to atmosphere exposure, the process is said to be A. effervescence B. efflorescence C. fluorescence D. deliquescence					
	C. D.	molecular collisi heat of reaction	ions		46.	Three drops of 1.0 mol dm ⁻³ solution of NaOH are added to 20 cm ⁻³ of a solution of pH 8.4. The pH of the resulting					
39.		ty of electricity that		e liberated if the same ated 0.65 g of zinc is			on will be less than 8.4	B.	greater than 8.4 to that of pure water.		
	A. C.	8.04 g 2.01 g	B. D. [7n =	4.02 g 1.00 g 65, Hg = 201]					•		
			[Zii –	03, 11g – 201 _]	47.	Tetrac	oxosulphate (VI) ac	id burns	s the sk9in by		
40.	A.	dissolved in water, a rapid reaction	, NaOH	flakes show		A. C.	dehydration hydration	B. D.	hydrolysis heating		
	B.	a slow reaction	L		40	The	b				
	C. D.	an exothermic cl an endothermic	_		48.		onmental pollution uranium		red as a source of		
41.	Steam	changes the color	ur of ar	hydrous cobalt (11)		В.	lead compound	S			
		le from	ur or ur	injurous coount (11)		C.	organphosphou		mpounds		
	A. C.	blue to white blue to pink	B. D.	white to green white to red		D.	silicate minerals		r		
		-			49.	The pr	roperty which make	s alcohol	soluble in water is the		
42.				ns containing only		A.	ionic character				
			e hydro	gen gas when reacted		B.	boiling point				
	with m	agnesium metal?				C.	covalent nature				
	A. C.	1.0 x 10 ⁻¹² mol dr 1.0 x 10 ⁻⁴ mol dm				D.	hydrogen bond	ing			
					50.	The fu	urring of kettles is ca	aused by	the presence in water		
43.				nass101 g at 20°C is		of					
				s dissolved completely		A.	calcium hydroge				
				resulting solution is		B.	calcium trioxoca		1 1		
	A.	saturated	B.	unsaturated		C.	calcium tetraoxo		e(VI)		
	C.	supersaturated	D.	a suspension.		D.	calcium hydroxi	ae			
44.	of a sol			Ia ₂ CO ₃ requires 20cm ³ on. The concentration							
	A.	0.2 mol dm ⁻³	B.	0.4 mol dm ⁻³							
	C.	0.5 mol dm ⁻³	D.	0.6 mol dm ⁻³							
					1.			en is p	roduced from the		
				Chemis	try	2003					
	A. B. C. D.	Burning keroser Freezing ice-crea Exposing white Dissolving calci	am phosph		2. 5.	C. Which 3Cu+		D. s a phys $(O_3)_2 + 4$	= 22.4 dm³] absorption		
		-					=		- 1		

Neutral atoms of neon with atomic number 10 have the [A = 27, S=32, H=1, O=16] same number of electrons as O^{2+} A. B. $Ca^{\scriptscriptstyle 2+}$ The filter in a cigarette reduces the nicotine content by C. K⁺. D. Mg+ A. burning B. adsorption

6.

What is the percentage by mass of oxygen in

B.

D.

25.39%

59.25%

3.

4

 $Al_2(SO_4)_3.2H_2O?$

14.29%

50.79%

A.

C.

are

A.

C.

1 and 3

6 and 2

B.

D.

2 and 3

8 and 2

- 7. The noble gases owe their inactivity to octet configuration A. B. cyclic shape C. hexagonal shape D. obtuse configuration According to the kinetic theory, an increase in 8. temperature causes the kinetic energy of particles to decrease B. increase A. C. remain constant D. be zero 9. 1. $H = Is^1$ \mathbf{II} $N = Is^2 2s^2 2p^3$ Ш $O = Is^2 2s^2 2p^4$ $Zn = Is^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$ IV From the above, which of the following pairs is likely to be paramagnetic? I and II B. I and III A. C. I and IV D. I and IV A gas exerts pressure on its container because 10. A. some of its molecules are moving faster than B. of the collision of the molecules with each C. of the mass of the molecules of gas D. the molecules of a gas collide with walls of the container. 11. When cathode rays are deflected onto the electrode of an electrometer, the instrument becomes A. negatively charged positively charged C. neutral bipolar D. 12. The weakest attractive forces that can be observed between two molecules is A. ionic B. covalent C. coordinate covalent D. Van der Waals. A consequence of global warming is 13. air pollution A. water pollution B. C. increased humidity D. flooding Which of the following ions is acidic? 14. B. A. K^{+} NO, S^{2-} D. H,O+ 15. The structural component that makes detergent dissolve more quickly in water than soap is A. -SO3-Na+ B. -COO Na+ C. -SO, Na+ D. -COO- K+ A liquid that will dissolve fat is 16. hydrochloric acid A. B. calcium hydroxide
- $0.97 \, \mathrm{g}$ A. B. $9.70 \, g$ C. 19.42 g D. 97.10g $[K_{2}CrO_{4} = 194.2 \text{ g mol dm}^{-1}]$ 18. Farmlands affected by crude-oil spillage can be decontaminated by adding acidic solution A. using aerobic bacteria B. C. pouring water on the affected area D. burning off the oil from the area. 19. When 10g of sodium hydroxide is dissolved in 100cm³ of water, the solution formed is approximately A. 0.01 mol dm⁻³ B. 0.10 mol dm-1 C. 0.25 mol dm⁻¹ D. 0.50 mol dm-1 [Na = 23, H= 1, O = 16]20. A change in the temperature of a saturated solution disturbs the equilibrium between the dissolved solute and the solvent A. B. Solvent and the undissolved C. Dissolved solute and the undissolved solute Dissolved solute and the solution. D. 21. If an equilibrium reaction has H > 0, the reaction will proceed favourable in the forward direction. high temperature A. any temperature B. C. low temperature minimum temperature D. 22. Δ n the oxide 23. s that A. electrons are consumed oxidation is involved B. C. ions are reduced D. electrode dissolves Which of the following will change when a catalyst is added to a chemical reaction? The activation energy A.
- 24.
 - B. The potential energy of the reactants
 - C. The heat of reaction
 - D. The potential energy of the products.

kerosene

water

C.

D.

25.		_	-		with a reducing agent,		C.	Ca	D.	Sn	
		ch of the f									
	A.			xidation	number	34.			ollowing	stateme	nts is true of sulphur
	B.		mes redu					oxide?			
	C.		protons				A.			_	e(V1) acid with water
	D.	Z gains	protons	S.			В.	It is an	n odourle	ess gas	
							C.	It is an	acid an	hydride	
26.	When	at equilibr	ium, wh	ich of the	e reactions below will		D.	It form	s white p	recipitate	with acidified barium
	shift to	the right	t if the p	oressure	is increased and the			chlorid	le.		
	temper	rature is k	ept cons	tant							
	A.	$2SO_{3}$	2SO	$O_{2} + O_{2}$		35.	The s	alt that wi	ill form	a precipi	tate soluble in excess
	B.	2SO	2CC	$O_{1}^{2(g)} + O_{2}^{2(g)}$	3)			onia solutio			
	C.	2H. +	'!O	^(g) 2H.O)		A.	Ca(NO		B.	$Cu(NO_3)_2$
	D.	2NO	$\overset{2(g)}{N}$	$O_{2(g)} + O_{2(g)} + O_{2(g)} + O_{2(g)} + O_{2(g)} + O_{2(g)}$	(g)		C.	Mg(N0		D.	$Al(NO_3)_2$
		(g)	- '2(g) 2(g)			-		3/2		(- · - 3/2
27.	In the	electrolysi	s of a co	ncentrate	ed solution of sodium	36.	Then	netal libera	ites hydro	ogen fron	n cold water in bubbles
					hich of the following	20.	only i			98411 11 011	Total water in outcores
		_			athode and anode		A.	Na		B.	K
		tively? -		t the c	athode and anode		C.	Ca		D.	Al
	A.		ı Ćl- 🗀	∖ B	Na ⁺ and OH ⁻		۵.	Cu		ъ.	7 11
	C.	H ⁺ and		D.	H ⁺ and Cl ⁻	37.	Chlor	rine gas tui	rne a dai	nn starch	n-iodine paper
	C.	II an a	→ 11	D.	II and Ci	31.	A.	pink	ilis a dai	B.	colourless
28.	CO	пО	CO	U			C.	red		D.	dark blue
20.	Erom 1	- $H_2O_{(g)}$	on above	$H_{2(g)} + H_{2(g)}$	g) ate the standard heat		С.	icu		D.	dark blue
						38.	Thom	n a d a m n m n	oooss of	manufaa	tumin a staal fama iman
	Change		10aru en	marpies	of formation of CO _{2(g)}	30.		nodern pro	ocess of	manurac	turing steel form iron
			_(g) in KJ n	noi · are	-394, -242 and -110		is by				
	respec		1.1	ъ	4017 11		A.		ent with	acids	
	A.	-262 kJı		B.	-42 kJmol ⁻¹		B.	oxidati			
	C.	+42 kJn		D.	+262 kJmol ⁻¹		C.		eduction		
			→				D.	treatme	ent with	alkalis	
29.		_		in a tea,	the reaction is always						
		panied by				39.					
	A.	-		y change							
	B.	_	-	y chang	e						
	C.	no entr	opy cha	nge							
	D.	a minin	num enti	opy chai	nge.						
30.	Which	of the fol	lowing i	s an elec	etrolyte?						
	A.	Alcoho									
	B.	Sodium	acetate	solution				0			
	C.	Solid po	otassium	hydrox	ide			- 11			
	D.	Mercur	У				Brest!	. 6 AL	Der	-	-120
							11194	4 1	-	1 1	370
31.	Chlori	ne gas is p	repared	in the la	aboratory by			Heat		11 11	
	A.	adding	concentr	ated hyd	rochloric acid to solid		(1		75 -
		mangar	ese (1V)) oxide				- 11	1	\sim	Licrose
	B.				traoxosulphate (V1)	40.]		-	7.1.7.40	A sustant
				lium chl							
	C.				ydrochloric acid onto		B.	CH, CÍ	H.Br		
					ganate (V11) crystals		C.	C, H,B			
	D.				hydrochloric using		D.	CHBr ₃			
	2.				nate (V1) crystals.		2.	3	3		
		рошоот	p		inte (+1) ergetaist	41.	Carbo	ohvdrates	are co	mpounds	s containing carbon
32.	Metal	of the trai	nsition s	eries ha	ve special properties	11.		onyurutes ogen and o			
32.					groups 1 and 11		A.	3:1:1	Mygen n	B.	2:1:1
	WIIICII	are differe	2111 11 0111	tirose or	groups I and II		C.	1:2:1		D.	1:1:1
	elemente	s because t	hev her	e nartial	ly filled		۲.	1.4.1		D.	1.1.1
		s because i s orbita		e partial p orbit		42	Нош	any icomo	re door	nantana 1	have?
	A. C.	d orbita		f orbit		42		any isome			nave:
	۲.	u orbita	115 D.	1 OI DIL	2115		A. C.	6 4	В. D.	5 3	
22	11	m oc. 1 1	ا د د اسما	former = 1	ot allcaling and all all an		۲.	4	D.	3	
33.		ii can be d	uspiace	iorm a h	ot alkaline solution	42	TT1 1	alanti C		alami 1	
	by.	Б	D	C		43.					is used in local soap
	A.	Fe	B.	Cu			makıı	ng because	e 11 conta	uns	

- B. sodium hydroxide
- C. potassium hydroxide
- D. soluble carbonates and hydrogen carbonates.
- 44. The formula for ethyl butanoate is
 - C,H,COOC,H, C,H,COOC,H, C,H,COOC,H, C. D. C,H,COOC,H
- 45. The type of reaction that is peculiar to benzene is
 - hydrolysis addition B.
 - C. polymerization D. substitution
- Ethanol reacts with excess acidified K₂Cr₂O₂ 46.
 - ethanedioc acid B. ethanol
 - C. ethyl ethanoate D. ethanoic acid
- 47. A compound contains 40.0% caron 6.7% hydrogen and 53.3% oxygen. If the molar mass of the compound is 180, find the molecular formula.
 - A. CH,O

C.

- - $C_3H_6O_3$
- C₆H₆O₂ $C_6H_{12}O_6$ D. [H=1, C=12, O=16]

C. Fat 50. The principal constituent of natural gas is

A.

C.

48.

49.

- B. hydrocracking reforming
- catalytic cracking
- Which of the following is found in cotton

plolymerization

The process by which atoms are rearrange into different

molecular structures in the petroleum refining process

D.

- A. Starch
- B. Cellulose

Oil

- methane

is referred to as

- B. ethane
- C. propane
- D. butane.

Chemistry 2004

- 1. In the electrolysis of brine, the anode is
 - A. Zinc
 - B. Platinum
 - \mathbf{C} Carbon
 - D. Copper.
- 2.

 $N_2O_{4(g)} \longrightarrow 2NO_{2(g)}$ In the endothermic reaction above, more product formation will be favoured by

- A. a decrease in pressure
 - B. a decrease in volume
 - C. an increase in pressure
 - D. a constant volume
- 3. The oxidation state of Chlorine in HClO₄ is
 - A. -1
- -5
- C. +7 D.
- Which of the following hydrogen halides has the 4. highest entropy value?

В.

- A. HBr C. HI
- B.

+1

- HF D. **HCl**
- 5. The mass of silver deposited when a current of 10A is passed through a solution of silver salt for 4830s
 - A. 54.0 g
- B.
- C. $13.5\,\mathrm{g}$
- $27.0\,\mathrm{g}$ $108.0\,\mathrm{g}$
- $[Ag = 108, F = 96500 \text{ C mol}^{-1}]$
- Which of the following acts as both a reducing and 6. an oxidizing agent?
 - A. H,S C.
- B. CO,
- D. Η, SO,

- 7. Which of the following shows little or not net reaction when the volume of the system is decreased?
 - $2O_{3(g)} \longleftrightarrow 3O_{\gamma_0}$ A.
 - B.
 - $\begin{array}{c} 2 O_{3(g)} \\ H_{2(g)} + I \underset{(g)}{\longleftrightarrow} 2 H I_{(g)} \\ 2 N O_{2(g)} \longrightarrow N 2 O_{4(g)} \\ P C I_{5(g} \longleftrightarrow P C I_{3(g)} + C I_{2(g)} \end{array}$ C. D.
 - 2CO + O→2CO
- 8. Given that $\triangle H$ [CO] is – 110.4 kJmol⁻¹ and \triangle H[CO₂]is -393° kJmol⁻¹, the energy change for the reaction above is
 - A. -282.6kJ B.
 - $+503.7 \, kJ$ $+282.6 \, kJ$
 - C. -503.7 kJ D.
 - $ZnO + CO \longrightarrow Zn + CO_2$
- 9. In the reaction above, Zinc has been
 - displaced A.
- B. oxidized
- reduced
- D. decomposed.
- 10. What volume of gas is evolved at s.t.p. if 2g of Calcium trioxocarbonate(iv) is added to a solution of hydrochloric acid?
 - A. 224 cm³
- B. 112 cm³
- C. 2240 cm³
- D. 448 cm³
- [Ca = 40, C=12, O=16, Cl = 35.5, H= 1,Molar volume of a gas at s.t.p = 22.4 dm^3]
- 11. A chemical reaction is always associated with
 - a change in the nature of the reactants A.
 - B. the formation of new substances
 - C. a change in the volume of the reactants
 - D. an increase in the composition of one of the substances,

12.	gas on	a solid substance heating, the s				22.		ol + Alkanoic acid		
	undergo		ъ						_	on above is known as.
	A.	sublimation	B.	•	llization		A.	saponification	B.	hydrolysis
	C.	distillation	D.	evapo	ration		C.	fermentation	D.	hydration
13.		tion contains 4.9g				23.	CH ₃ C	$OOH_{(g)} \longrightarrow CH_{4(g)} +$	- CO _{2(g)}	
		e the amount of co	pper (11)) oxide th	at will react			eaction above is	ъ	
	with it	40.0	-	00.0			A.	acidification	B.	esterification
	A.	40.0 g	B.	80.0 g			C.	decarboxylation	D.cart	ooxylation.
	C.	0.8 g	D.	4.0 g	20 11_11	24	A abox	maatamiatia aftha all	rana fam	.:1:.
		[Cu	= 64, O =	=10, 5 =3	32, H=1	24.		racteristic of the alk		111y 1S
1.4	Vulconi	antion involves th		ol of			A.	substitution rea		
14.		zation involves th			ala band		B. C.	neutralization re		
	A. C.	the single bond			ole bond		C. D.	addition reaction elimination reaction		
	C.	a polymer	D.	a mone	omer		D.	eminiation reac	uon.	
15.	The alk		-			25.		in a soil that has hi	gh	by metal ions is very
	A.	C_nH_{2n}	B. D.	$C_{n}H_{2n-2}$	2		A.	alkalinity	B.	nitrate content
	C.	$ C_n H_{2n} $ $ C_n H_{2n+1} $	D.	$ C_n H_{2n-2} $ $ C_n H_{2n+2} $	2		C.	acidity	D.	chloride content
16.	C ₂ H ₅ OH	H _(aq) Conc. H _S O ₂ -	>	Y		26.		olubility in mol dm ⁻¹ of water at 180°C is	³ of 20g o	of CuSO ₄ dissolved in
		eaction above, Y r		t			A.	0.25	B.	0.13
	A.	C ₂ H ₅ COOH	1	B.	CH_4		C.	2.00	D.	1.25
	C.	CH ₃ OCH ₃		D.	$C_2 \overset{4}{H_4}$			[Cu = 64, S = 3]	32, O = 3	
17	In the m	naduation of soon		atad aadi	um ahlanida	27	W/b: al	of these commoun	daiaam	ommol colt?
17.		roduction of soap,	concentr	ated sour	um chioride	27.		of these compoun		
	is added						A.	Na ₂ CO ₃	B.	NaHCO ₃
	A. B.	saponify the soa	_				C.	NaHSO ₄	D.	NaHS
	Б. С.	emulsify the soa decrease the sol		f tha can	n	28.	A core	cinogenic substanc	o is	
	D.	increase the solu				20.	A care	nitrogen (ll) oxic		carbon (ll) oxide
	D.	merease the soft	ionity of	the soap	P		C.	asbestos dust	D.	sawdust.
18.	Oxyacet	tylene flame is use	d for 1ro	n-weldin	ig because it					
	A.	evolves a tot hea				29.				will exactly neutralize
	B.	dissociates to pro	oduce ca	rbon (1V	y) oxide and		20 cm	⁻³ of 0.1 mol dm ⁻³ Na	OH solu	tion?
		oxygen					A.	$5.0\mathrm{cm}^{-3}$		
	C.	makes the iron n	netal soli	dify very	quickly		B.	6.8 cm ⁻³		
		es with oxygen gi					C.	8.3 cm ⁻³		
19.		of these reagents of	an confi	rm the p	resence of a		D.	2.0 cm ⁻³		
	triple bo									
	A. B.	Bromine gas				30.		_	e (V1) di	issolves in water only
	Б. С.	Bromine water					-	gly to form a colloid	B.	solution
		Acidified KMnC	4				A. C.		D. D.	
20.	Copper I	(1) chloride H CH ₃					С.	suspension	D.	precipitate
20.	Î					31	Hardn	ess of water is ca	used by	the presence of the
	$H_3C - C$	C - C -CH ₂ - CH ₂ C	H_3				ions o	f		•
							A.	calcium and mag		
		CH ₃ H					B.	calcium and sod		
		PAC nomenclatur		compoun	d above is		C.	magnesium and		
	A.	3,4 -dimethylhex					D.	sodium and pota	assium	
	B.	2,3 –dimethylhex	ane							
	C.	2 – ethylhexane				32.				y arrangement of the
	D.	2 – ethylpentane	•					ules of a gas becau	•	
21							A.			other in the container
21.		ner of $C_5 H_{12}$ is					B.	are too small in		
	A.	2 –ethyl butane					C.			ction between them
	B.	butane					D.	have no definite	shape	
	C.	2- methyl butane								
	2- meth	yl propane								

33.	The sh	ape of the s-or	bital is		41.	Accor	ding to Charles'	law, the vo	lume of a gas becomes
	A.	elliptical	B.	spiral		zero a			
	C.	circular	D.	spherical		A.	-100°C	B.	-273°C
24	3371 * 1	C 41	. ,	C : 111 1 .		C.	-373°C	D.	0°C
34.	wnich burn in		ng mixture	s of gases is likely to	42.	Whom	. stoom is moss	and arram	and but sombon the
	A.	Helium and	noon		42.		n steam is pass ances produced		red-hot carbon, the
	B.	Neon and ni				A.	hydrogen and		1) ovide
	C.	Neon and h				В.	hydrogen and		
	D.	Nitrogen and				C.			bonate (1V) acid
	Σ.	1 titi ogen unt				D.			carbon (1V) oxide
35.	The pro	perty of chlori	ne which ca	use hydrogen chloride			,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				e molecule is its.	43.	Alum	inum hydroxide i	s used in th	ne dyeing industry as a
	A.	electronegat	ivity B.	electropositivity		A.	dye	B.	dispersant
	C.	electron affi	nity D.	electrovalency.		C.	salt	D.	mordant
36.					44.		-	ssess varia	able oxidation states
		1	\				se they have.		
		((()	- Nucleus			A.	electrons in t		
		(6)))			B.	electrons in t		
			- An electri	M1		C.	partially filled		
						D.	a variable nur	nber of elec	etrons in the p orbitals
					45.	The a	llotrope of carbo	n used in t	he decolourization of
	In the e	xperiment abo	ve, X is mix	xture of nitrogen,		sugar	_		
		1V) oxide and				A.	soot	B.	lampblack
	A.	oxygen	B.	inert gas		C.	graphite	D.	charcoal
	C.	water	D.	impurities					
					46.		on is tetravalent		
37.				uses in 20s. How long		A.			bital hybridized
				r (V1) oxide to diffuse		B.			f carbon hybridize
		he same cond		60%		C.		in all the	orbital of carbon are
	A. C.	40s 20s	В. D.	60s 5s		D.	equivalent	in both the	e 2s and 2p orbital are
	C.		=12, H=1, S=			D.	equivalent.	III DOUI UIC	28 and 2p oronar are
		[C	-12,11-1,5-	-32, 0-10]			equivalent.		
38.	Chlorii	ne consisting of	of two isoto	pes of mass numbers	47.	Sodiu	m metal is alway	ys kept und	ler oil because it
				atomic mass of 35.5.		A.	is reduced by	atmosphe	ric nitrogen
	Calcula	ate the relative	abundance	of the isotope of mass		B.	readily reacts		
	number					C.			carbon(1V)oxide
	A.	60	B.	20		D.	reacts vigoro	us on expo	osure to air.
	C.	75	D.	25	40	4 11	1 .		
20	A 1		11.11.1	January 11 - C	48.	_	s are best prepar		£41 1
39.			ided to a na	alogen atom to form a		A.			re of the metals
		on with 8 valence ele	aatuana			B. C.		ixture of th	eir metallic oxides
	A. B.	7 valence ele				C. D.	arc-welding electroplating	7	
	C.	2 valence el				D.	Ciccuopianing	Š	
	D.	3 valence el			49.	Sulph	ur (1V) oxide ble	eaches by	
	2.	<i>-</i> , <i>((101100 01)</i>			.,.	A.	hydration	B.	reduction
40.	²²⁶ Ra -	\rightarrow x Rn + al	pha - partic	le		C.	absorption	D.	oxidation.
	88	86					_		
	A.	226			50.				n be collected by the
	B.	220				metho	od of downward	delivery?	
	C.	227				A.	Oxygen	B.	Hydrogen
	D.	222				C.	Chlorine	D.	Ammonia